
ipywidgets Documentation
Release 7.6.2

https://jupyter.org

Feb 06, 2021

CONTENTS

1 Full Table of Contents 1
1.1 User Guide . 1
1.2 Developer Docs . 101

i

ii

CHAPTER

ONE

FULL TABLE OF CONTENTS

1.1 User Guide

1.1.1 Installation

Users can install the current version of ipywidgets with pip or conda.

In most cases, installing the Python ipywidgets package will also automatically configure classic Jupyter Notebook
and JupyterLab 3.0 to display ipywidgets. With pip, do:

pip install ipywidgets

or with conda, do:

conda install -c conda-forge ipywidgets

Installing in classic Jupyter Notebook

Most of the time, installing ipywidgets automatically configures Jupyter Notebook to use widgets. The
ipywidgets package does this by depending on the widgetsnbextension package, which configures the clas-
sic Jupyter Notebook to display and use widgets. If you have an old version of Jupyter Notebook installed, you may
need to manually enable the ipywidgets notebook extension with:

jupyter nbextension enable --py widgetsnbextension

When using virtualenv and working in an activated virtual environment, the --sys-prefix option may be re-
quired to enable the extension and keep the environment isolated (i.e. jupyter nbextension enable --py
widgetsnbextension --sys-prefix).

If your Jupyter Notebook and the IPython kernel are installed in different environments (for example, separate envi-
ronments are providing different Python kernels), then the installation requires two steps:

1. Install the widgetsnbextension package in the environment containing the Jupyter Notebook server.

2. Install ipywidgets in each kernel’s environment that will use ipywidgets.

For example, if using conda environments, with Jupyter Notebook installed on the base environment and the kernel
installed in an environment called py36, the commands are:

conda install -n base -c conda-forge widgetsnbextension
conda install -n py36 -c conda-forge ipywidgets

1

https://pip.pypa.io/en/stable/
https://conda.readthedocs.io/en/latest/
https://virtualenv.pypa.io/en/stable/

ipywidgets Documentation, Release 7.6.2

Installing in JupyterLab 3.0

Most of the time, installing ipywidgets automatically configures JupyterLab 3.0 to use widgets. The
ipywidgets package does this by depending on the jupyterlab_widgets package, version 1.0, which config-
ures JupyterLab 3 to display and use widgets.

If your JupyterLab and the IPython kernel are installed in different environments (for example, separate environments
are providing different Python kernels), then the installation requires two steps:

1. Install the jupyterlab_widgets package (version 1.0 or later) in the environment containing JupyterLab.

2. Install ipywidgets in each kernel’s environment that will use ipywidgets.

For example, if using conda environments, with JupyterLab installed on the base environment and the kernel installed
in an environment called py36, the commands are:

conda install -n base -c conda-forge jupyterlab_widgets
conda install -n py36 -c conda-forge ipywidgets

Installing into JupyterLab 1 or 2

To install the JupyterLab extension into JupyterLab 1 or 2, you also need to run the command below in a terminal
which requires that you have nodejs installed.

For example, if using conda environments, you can install nodejs with:

conda install -c conda-forge nodejs

Then you can install the labextension:

jupyter labextension install @jupyter-widgets/jupyterlab-manager

This command defaults to installing the latest version of the ipywidgets JupyterLab extension. Depending on the
version of JupyterLab you have installed, you may need to install an older version.

If you install this extension while JupyterLab is running, you will need to refresh the page or restart JupyterLab before
the changes take effect.

Note: A clean reinstall of the JupyterLab extension can be done by first running the jupyter lab clean com-
mand which will remove the staging and static directories from the lab directory. The location of the lab directory can
be queried by executing the command jupyter lab path in your terminal.

Frequently Asked Questions

The issues in the Reference milestone on GitHub include many questions, discussions, and answers about ipywidgets.

Question: When I display a widget or interact, I just see some text, such as IntSlider(value=0)
or interactive(children=(IntSlider(value=0, description='x', max=1), Output()),
_dom_classes=('widget-interact',)). What is wrong?

Answer: A text representation of the widget is printed if the widget control is not available. It may mean the widget
JavaScript is still loading. If the message persists in the Jupyter Notebook or JupyterLab, it likely means that the
widgets JavaScript library is either not installed or not enabled. See the installation instructions above for setup
instructions.

If you see this message in another frontend (for example, a static rendering on GitHub or NBViewer), it may mean
that your frontend doesn’t currently support widgets.

2 Chapter 1. Full Table of Contents

https://nodejs.org/en/
https://github.com/jupyter-widgets/ipywidgets/tree/master/packages/jupyterlab-manager#version-compatibility
https://github.com/jupyter-widgets/ipywidgets/issues?q=is%3Aopen+is%3Aissue+milestone%3AReference

ipywidgets Documentation, Release 7.6.2

1.1.2 Using Interact

The interact function (ipywidgets.interact) automatically creates user interface (UI) controls for explor-
ing code and data interactively. It is the easiest way to get started using IPython’s widgets.

[1]: from __future__ import print_function
from ipywidgets import interact, interactive, fixed, interact_manual
import ipywidgets as widgets

Basic interact

At the most basic level, interact autogenerates UI controls for function arguments, and then calls the function with
those arguments when you manipulate the controls interactively. To use interact, you need to define a function
that you want to explore. Here is a function that returns its only argument x.

[2]: def f(x):
return x

When you pass this function as the first argument to interact along with an integer keyword argument (x=10), a
slider is generated and bound to the function parameter.

[3]: interact(f, x=10);

interactive(children=(IntSlider(value=10, description='x', max=30, min=-10),
→˓Output()), _dom_classes=('widget-...

[3]: <function __main__.f(x)>

When you move the slider, the function is called, and its return value is printed.

If you pass True or False, interact will generate a checkbox:

[4]: interact(f, x=True);

interactive(children=(Checkbox(value=True, description='x'), Output()), _dom_classes=(
→˓'widget-interact',))

[4]: <function __main__.f(x)>

If you pass a string, interact will generate a text box.

[5]: interact(f, x='Hi there!');

interactive(children=(Text(value='Hi there!', description='x'), Output()), _dom_
→˓classes=('widget-interact',))

[5]: <function __main__.f(x)>

interact can also be used as a decorator. This allows you to define a function and interact with it in a single shot.
As this example shows, interact also works with functions that have multiple arguments.

[6]: @interact(x=True, y=1.0)
def g(x, y):

return (x, y)

interactive(children=(Checkbox(value=True, description='x'), FloatSlider(value=1.0,
→˓description='y', max=3.0, ...

1.1. User Guide 3

ipywidgets Documentation, Release 7.6.2

Fixing arguments using fixed

There are times when you may want to explore a function using interact, but fix one or more of its arguments to
specific values. This can be accomplished by wrapping values with the fixed function.

[7]: def h(p, q):
return (p, q)

When we call interact, we pass fixed(20) for q to hold it fixed at a value of 20.

[8]: interact(h, p=5, q=fixed(20));

interactive(children=(IntSlider(value=5, description='p', max=15, min=-5), Output()),
→˓_dom_classes=('widget-in...

[8]: <function __main__.h(p, q)>

Notice that a slider is only produced for p as the value of q is fixed.

Widget abbreviations

When you pass an integer-valued keyword argument of 10 (x=10) to interact, it generates an integer-valued slider
control with a range of [-10,+3*10]. In this case, 10 is an abbreviation for an actual slider widget:

IntSlider(min=-10, max=30, step=1, value=10)

In fact, we can get the same result if we pass this IntSlider as the keyword argument for x:

[9]: interact(f, x=widgets.IntSlider(min=-10, max=30, step=1, value=10));

interactive(children=(IntSlider(value=10, description='x', max=30, min=-10),
→˓Output()), _dom_classes=('widget-...

[9]: <function __main__.f(x)>

This examples clarifies how interact processes its keyword arguments:

1. If the keyword argument is a Widget instance with a value attribute, that widget is used. Any widget with a
value attribute can be used, even custom ones.

2. Otherwise, the value is treated as a widget abbreviation that is converted to a widget before it is used.

The following table gives an overview of different widget abbreviations:

Keyword argument

Widget

True or False

Checkbox

'Hi there'

Text

value or (min,max) or (min,max,step) if integers are passed

IntSlider

value or (min,max) or (min,max,step) if floats are passed

FloatSlider

4 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

['orange','apple'] or `[(‘one’, 1), (‘two’, 2)]

Dropdown

Note that a dropdown is used if a list or a list of tuples is given (signifying discrete choices), and a slider is used if a
tuple is given (signifying a range).

You have seen how the checkbox and text widgets work above. Here, more details about the different abbreviations
for sliders and dropdowns are given.

If a 2-tuple of integers is passed (min, max), an integer-valued slider is produced with those minimum and maxi-
mum values (inclusively). In this case, the default step size of 1 is used.

[10]: interact(f, x=(0,4));

interactive(children=(IntSlider(value=2, description='x', max=4), Output()), _dom_
→˓classes=('widget-interact',)...

[10]: <function __main__.f(x)>

If a 3-tuple of integers is passed (min,max,step), the step size can also be set.

[11]: interact(f, x=(0,8,2));

interactive(children=(IntSlider(value=4, description='x', max=8, step=2), Output()), _
→˓dom_classes=('widget-int...

[11]: <function __main__.f(x)>

A float-valued slider is produced if any of the elements of the tuples are floats. Here the minimum is 0.0, the
maximum is 10.0 and step size is 0.1 (the default).

[12]: interact(f, x=(0.0,10.0));

interactive(children=(FloatSlider(value=5.0, description='x', max=10.0), Output()), _
→˓dom_classes=('widget-inte...

[12]: <function __main__.f(x)>

The step size can be changed by passing a third element in the tuple.

[13]: interact(f, x=(0.0,10.0,0.01));

interactive(children=(FloatSlider(value=5.0, description='x', max=10.0, step=0.01),
→˓Output()), _dom_classes=('...

[13]: <function __main__.f(x)>

For both integer and float-valued sliders, you can pick the initial value of the widget by passing a default keyword
argument to the underlying Python function. Here we set the initial value of a float slider to 5.5.

[14]: @interact(x=(0.0,20.0,0.5))
def h(x=5.5):

return x

interactive(children=(FloatSlider(value=5.5, description='x', max=20.0, step=0.5),
→˓Output()), _dom_classes=('w...

Dropdown menus are constructed by passing a list of strings. In this case, the strings are both used as the names in the
dropdown menu UI and passed to the underlying Python function.

[15]: interact(f, x=['apples','oranges']);

1.1. User Guide 5

ipywidgets Documentation, Release 7.6.2

interactive(children=(Dropdown(description='x', options=('apples', 'oranges'), value=
→˓'apples'), Output()), _do...

[15]: <function __main__.f(x)>

If you want a dropdown menu that passes non-string values to the Python function, you can pass a list of ('label',
value) pairs. The first items are the names in the dropdown menu UI and the second items are values that are the
arguments passed to the underlying Python function.

[16]: interact(f, x=[('one', 10), ('two', 20)]);

interactive(children=(Dropdown(description='x', options=(('one', 10), ('two', 20)),
→˓value=10), Output()), _dom...

[16]: <function __main__.f(x)>

interactive

In addition to interact, IPython provides another function, interactive, that is useful when you want to reuse
the widgets that are produced or access the data that is bound to the UI controls.

Note that unlike interact, the return value of the function will not be displayed automatically, but you can display
a value inside the function with IPython.display.display.

Here is a function that displays the sum of its two arguments and returns the sum. The display line may be omitted
if you don’t want to show the result of the function.

[17]: from IPython.display import display
def f(a, b):

display(a + b)
return a+b

Unlike interact, interactive returns a Widget instance rather than immediately displaying the widget.

[18]: w = interactive(f, a=10, b=20)

The widget is an interactive, a subclass of VBox, which is a container for other widgets.

[19]: type(w)

[19]: ipywidgets.widgets.interaction.interactive

The children of the interactive are two integer-valued sliders and an output widget, produced by the widget
abbreviations above.

[20]: w.children

[20]: (IntSlider(value=10, description='a', max=30, min=-10),
IntSlider(value=20, description='b', max=60, min=-20),
Output())

To actually display the widgets, you can use IPython’s display function.

[21]: display(w)

interactive(children=(IntSlider(value=10, description='a', max=30, min=-10),
→˓IntSlider(value=20, description='...

6 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

At this point, the UI controls work just like they would if interact had been used. You can manipulate them
interactively and the function will be called. However, the widget instance returned by interactive also gives you
access to the current keyword arguments and return value of the underlying Python function.

Here are the current keyword arguments. If you rerun this cell after manipulating the sliders, the values will have
changed.

[22]: w.kwargs

[22]: {'a': 10, 'b': 20}

Here is the current return value of the function.

[23]: w.result

[23]: 30

Disabling continuous updates

When interacting with long running functions, realtime feedback is a burden instead of being helpful. See the following
example:

[24]: def slow_function(i):
print(int(i),list(x for x in range(int(i)) if

str(x)==str(x)[::-1] and
str(x**2)==str(x**2)[::-1]))

return

[25]: %%time
slow_function(1e6)

1000000 [0, 1, 2, 3, 11, 22, 101, 111, 121, 202, 212, 1001, 1111, 2002, 10001, 10101,
→˓10201, 11011, 11111, 11211, 20002, 20102, 100001, 101101, 110011, 111111, 200002]
CPU times: user 395 ms, sys: 2.53 ms, total: 398 ms
Wall time: 398 ms

Notice that the output is updated even while dragging the mouse on the slider. This is not useful for long running
functions due to lagging:

[26]: from ipywidgets import FloatSlider
interact(slow_function,i=FloatSlider(min=1e5, max=1e7, step=1e5));

interactive(children=(FloatSlider(value=100000.0, description='i', max=10000000.0,
→˓min=100000.0, step=100000.0...

[26]: <function __main__.slow_function(i)>

There are two ways to mitigate this. You can either only execute on demand, or restrict execution to mouse release
events.

1.1. User Guide 7

ipywidgets Documentation, Release 7.6.2

interact_manual

The interact_manual function provides a variant of interaction that allows you to restrict execution so it is only
done on demand. A button is added to the interact controls that allows you to trigger an execute event.

[27]: interact_manual(slow_function,i=FloatSlider(min=1e5, max=1e7, step=1e5));

interactive(children=(FloatSlider(value=100000.0, description='i', max=10000000.0,
→˓min=100000.0, step=100000.0...

[27]: <function __main__.slow_function(i)>

You can do the same thing with interactive by using a dict as the second argument, as shown below.

[28]: slow = interactive(slow_function, {'manual': True}, i=widgets.FloatSlider(min=1e4,
→˓max=1e6, step=1e4))
slow

interactive(children=(FloatSlider(value=10000.0, description='i', max=1000000.0,
→˓min=10000.0, step=10000.0), B...

continuous_update

If you are using slider widgets, you can set the continuous_update kwarg to False. continuous_update
is a kwarg of slider widgets that restricts executions to mouse release events.

[29]: interact(slow_function,i=FloatSlider(min=1e5, max=1e7, step=1e5, continuous_
→˓update=False));

interactive(children=(FloatSlider(value=100000.0, continuous_update=False,
→˓description='i', max=10000000.0, mi...

[29]: <function __main__.slow_function(i)>

More control over the user interface: interactive_output

interactive_output provides additional flexibility: you can control how the UI elements are laid out.

Unlike interact, interactive, and interact_manual, interactive_output does not generate a user
interface for the widgets. This is powerful, because it means you can create a widget, put it in a box, and then pass the
widget to interactive_output, and have control over the widget and its layout.

[30]: a = widgets.IntSlider()
b = widgets.IntSlider()
c = widgets.IntSlider()
ui = widgets.HBox([a, b, c])
def f(a, b, c):

print((a, b, c))

out = widgets.interactive_output(f, {'a': a, 'b': b, 'c': c})

display(ui, out)

HBox(children=(IntSlider(value=0), IntSlider(value=0), IntSlider(value=0)))

Output()

8 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

Arguments that are dependent on each other

Arguments that are dependent on each other can be expressed manually using observe. See the following example,
where one variable is used to describe the bounds of another. For more information, please see the widget events
example notebook.

[31]: x_widget = FloatSlider(min=0.0, max=10.0, step=0.05)
y_widget = FloatSlider(min=0.5, max=10.0, step=0.05, value=5.0)

def update_x_range(*args):
x_widget.max = 2.0 * y_widget.value

y_widget.observe(update_x_range, 'value')

def printer(x, y):
print(x, y)

interact(printer,x=x_widget, y=y_widget);

interactive(children=(FloatSlider(value=0.0, description='x', max=10.0, step=0.05),
→˓FloatSlider(value=5.0, des...

[31]: <function __main__.printer(x, y)>

Flickering and jumping output

On occasion, you may notice interact output flickering and jumping, causing the notebook scroll position to change as
the output is updated. The interactive control has a layout, so we can set its height to an appropriate value (currently
chosen manually) so that it will not change size as it is updated.

[32]: %matplotlib inline
from ipywidgets import interactive
import matplotlib.pyplot as plt
import numpy as np

def f(m, b):
plt.figure(2)
x = np.linspace(-10, 10, num=1000)
plt.plot(x, m * x + b)
plt.ylim(-5, 5)
plt.show()

interactive_plot = interactive(f, m=(-2.0, 2.0), b=(-3, 3, 0.5))
output = interactive_plot.children[-1]
output.layout.height = '350px'
interactive_plot

interactive(children=(FloatSlider(value=0.0, description='m', max=2.0, min=-2.0),
→˓FloatSlider(value=0.0, descr...

[]:

1.1. User Guide 9

ipywidgets Documentation, Release 7.6.2

1.1.3 Simple Widget Introduction

What are widgets?

Widgets are eventful python objects that have a representation in the browser, often as a control like a slider, textbox,
etc.

What can they be used for?

You can use widgets to build interactive GUIs for your notebooks.
You can also use widgets to synchronize stateful and stateless information between Python and JavaScript.

Using widgets

To use the widget framework, you need to import ipywidgets.

[1]: import ipywidgets as widgets

repr

Widgets have their own display repr which allows them to be displayed using IPython’s display framework. Con-
structing and returning an IntSlider automatically displays the widget (as seen below). Widgets are displayed
inside the output area below the code cell. Clearing cell output will also remove the widget.

[2]: widgets.IntSlider()

IntSlider(value=0)

display()

You can also explicitly display the widget using display(...).

[3]: from IPython.display import display
w = widgets.IntSlider()
display(w)

IntSlider(value=0)

Multiple display() calls

If you display the same widget twice, the displayed instances in the front-end will remain in sync with each other. Try
dragging the slider below and watch the slider above.

[4]: display(w)

IntSlider(value=0)

10 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

Why does displaying the same widget twice work?

Widgets are represented in the back-end by a single object. Each time a widget is displayed, a new representation of
that same object is created in the front-end. These representations are called views.

Closing widgets

You can close a widget by calling its close() method.

[5]: display(w)

IntSlider(value=0)

[6]: w.close()

Widget properties

All of the IPython widgets share a similar naming scheme. To read the value of a widget, you can query its value
property.

[7]: w = widgets.IntSlider()
display(w)

IntSlider(value=0)

1.1. User Guide 11

ipywidgets Documentation, Release 7.6.2

[8]: w.value

[8]: 0

Similarly, to set a widget’s value, you can set its value property.

[9]: w.value = 100

Keys

In addition to value, most widgets share keys, description, and disabled. To see the entire list of synchro-
nized, stateful properties of any specific widget, you can query the keys property.

[10]: w.keys

[10]: ['_dom_classes',
'_model_module',
'_model_module_version',
'_model_name',
'_view_count',
'_view_module',
'_view_module_version',
'_view_name',
'continuous_update',
'description',
'description_tooltip',
'disabled',
'layout',
'max',
'min',
'orientation',
'readout',
'readout_format',
'step',
'style',
'value']

Shorthand for setting the initial values of widget properties

While creating a widget, you can set some or all of the initial values of that widget by defining them as keyword
arguments in the widget’s constructor (as seen below).

[11]: widgets.Text(value='Hello World!', disabled=True)

Text(value='Hello World!', disabled=True)

12 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

Linking two similar widgets

If you need to display the same value two different ways, you’ll have to use two different widgets. Instead of attempting
to manually synchronize the values of the two widgets, you can use the link or jslink function to link two
properties together (the difference between these is discussed in Widget Events). Below, the values of two widgets are
linked together.

[12]: a = widgets.FloatText()
b = widgets.FloatSlider()
display(a,b)

mylink = widgets.jslink((a, 'value'), (b, 'value'))

FloatText(value=0.0)

FloatSlider(value=0.0)

Unlinking widgets

Unlinking the widgets is simple. All you have to do is call .unlink on the link object. Try changing one of the
widgets above after unlinking to see that they can be independently changed.

[13]: # mylink.unlink()

1.1.4 Widget List

[1]: import ipywidgets as widgets

Numeric widgets

There are many widgets distributed with ipywidgets that are designed to display numeric values. Widgets exist for
displaying integers and floats, both bounded and unbounded. The integer widgets share a similar naming scheme
to their floating point counterparts. By replacing Float with Int in the widget name, you can find the Integer
equivalent.

IntSlider

[2]: widgets.IntSlider(
value=7,
min=0,
max=10,
step=1,
description='Test:',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True,
readout_format='d'

)

IntSlider(value=7, continuous_update=False, description='Test:', max=10)

1.1. User Guide 13

ipywidgets Documentation, Release 7.6.2

FloatSlider

[3]: widgets.FloatSlider(
value=7.5,
min=0,
max=10.0,
step=0.1,
description='Test:',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True,
readout_format='.1f',

)

FloatSlider(value=7.5, continuous_update=False, description='Test:', max=10.0,
→˓readout_format='.1f')

Sliders can also be displayed vertically.

[4]: widgets.FloatSlider(
value=7.5,
min=0,
max=10.0,
step=0.1,
description='Test:',
disabled=False,
continuous_update=False,
orientation='vertical',
readout=True,
readout_format='.1f',

)

FloatSlider(value=7.5, continuous_update=False, description='Test:', max=10.0,
→˓orientation='vertical', readout...

FloatLogSlider

The FloatLogSlider has a log scale, which makes it easy to have a slider that covers a wide range of positive
magnitudes. The min and max refer to the minimum and maximum exponents of the base, and the value refers to
the actual value of the slider.

[5]: widgets.FloatLogSlider(
value=10,
base=10,
min=-10, # max exponent of base
max=10, # min exponent of base
step=0.2, # exponent step
description='Log Slider'

)

FloatLogSlider(value=10.0, description='Log Slider', max=10.0, min=-10.0, step=0.2)

14 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

IntRangeSlider

[6]: widgets.IntRangeSlider(
value=[5, 7],
min=0,
max=10,
step=1,
description='Test:',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True,
readout_format='d',

)

IntRangeSlider(value=(5, 7), continuous_update=False, description='Test:', max=10)

FloatRangeSlider

[7]: widgets.FloatRangeSlider(
value=[5, 7.5],
min=0,
max=10.0,
step=0.1,
description='Test:',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True,
readout_format='.1f',

)

FloatRangeSlider(value=(5.0, 7.5), continuous_update=False, description='Test:',
→˓max=10.0, readout_format='.1f...

IntProgress

[8]: widgets.IntProgress(
value=7,
min=0,
max=10,
step=1,
description='Loading:',
bar_style='', # 'success', 'info', 'warning', 'danger' or ''
orientation='horizontal'

)

IntProgress(value=7, description='Loading:', max=10)

1.1. User Guide 15

ipywidgets Documentation, Release 7.6.2

FloatProgress

[9]: widgets.FloatProgress(
value=7.5,
min=0,
max=10.0,
step=0.1,
description='Loading:',
bar_style='info',
orientation='horizontal'

)

FloatProgress(value=7.5, bar_style='info', description='Loading:', max=10.0)

The numerical text boxes that impose some limit on the data (range, integer-only) impose that restriction when the
user presses enter.

BoundedIntText

[10]: widgets.BoundedIntText(
value=7,
min=0,
max=10,
step=1,
description='Text:',
disabled=False

)

BoundedIntText(value=7, description='Text:', max=10)

BoundedFloatText

[11]: widgets.BoundedFloatText(
value=7.5,
min=0,
max=10.0,
step=0.1,
description='Text:',
disabled=False

)

BoundedFloatText(value=7.5, description='Text:', max=10.0, step=0.1)

IntText

[12]: widgets.IntText(
value=7,
description='Any:',
disabled=False

)

IntText(value=7, description='Any:')

16 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

FloatText

[13]: widgets.FloatText(
value=7.5,
description='Any:',
disabled=False

)

FloatText(value=7.5, description='Any:')

Boolean widgets

There are three widgets that are designed to display a boolean value.

ToggleButton

[14]: widgets.ToggleButton(
value=False,
description='Click me',
disabled=False,
button_style='', # 'success', 'info', 'warning', 'danger' or ''
tooltip='Description',
icon='check'

)

ToggleButton(value=False, description='Click me', icon='check', tooltip='Description')

Checkbox

[15]: widgets.Checkbox(
value=False,
description='Check me',
disabled=False

)

Checkbox(value=False, description='Check me')

Valid

The valid widget provides a read-only indicator.

[16]: widgets.Valid(
value=False,
description='Valid!',

)

Valid(value=False, description='Valid!')

1.1. User Guide 17

ipywidgets Documentation, Release 7.6.2

Selection widgets

There are several widgets that can be used to display single selection lists, and two that can be used to select multiple
values. All inherit from the same base class. You can specify the enumeration of selectable options by passing a list
(options are either (label, value) pairs, or simply values for which the labels are derived by calling str).

Dropdown

[17]: widgets.Dropdown(
options=['1', '2', '3'],
value='2',
description='Number:',
disabled=False,

)

Dropdown(description='Number:', index=1, options=('1', '2', '3'), value='2')

The following is also valid, displaying the words 'One', 'Two', 'Three' as the dropdown choices but return-
ing the values 1, 2, 3.

[18]: widgets.Dropdown(
options=[('One', 1), ('Two', 2), ('Three', 3)],
value=2,
description='Number:',

)

Dropdown(description='Number:', index=1, options=(('One', 1), ('Two', 2), ('Three',
→˓3)), value=2)

RadioButtons

[19]: widgets.RadioButtons(
options=['pepperoni', 'pineapple', 'anchovies'],

value='pineapple',
description='Pizza topping:',
disabled=False

)

RadioButtons(description='Pizza topping:', options=('pepperoni', 'pineapple',
→˓'anchovies'), value='pepperoni')

Select

[20]: widgets.Select(
options=['Linux', 'Windows', 'OSX'],
value='OSX',
rows=10,
description='OS:',
disabled=False

)

Select(description='OS:', index=2, options=('Linux', 'Windows', 'OSX'), value='OSX')

18 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

SelectionSlider

[21]: widgets.SelectionSlider(
options=['scrambled', 'sunny side up', 'poached', 'over easy'],
value='sunny side up',
description='I like my eggs ...',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True

)

SelectionSlider(continuous_update=False, description='I like my eggs ...', index=1,
→˓options=('scrambled', 'sun...

SelectionRangeSlider

The value, index, and label keys are 2-tuples of the min and max values selected. The options must be nonempty.

[22]: import datetime
dates = [datetime.date(2015,i,1) for i in range(1,13)]
options = [(i.strftime('%b'), i) for i in dates]
widgets.SelectionRangeSlider(

options=options,
index=(0,11),
description='Months (2015)',
disabled=False

)

SelectionRangeSlider(description='Months (2015)', index=(0, 11), options=(('Jan',
→˓datetime.date(2015, 1, 1)), ...

ToggleButtons

[23]: widgets.ToggleButtons(
options=['Slow', 'Regular', 'Fast'],
description='Speed:',
disabled=False,
button_style='', # 'success', 'info', 'warning', 'danger' or ''
tooltips=['Description of slow', 'Description of regular', 'Description of fast'],

icons=['check'] * 3
)

ToggleButtons(description='Speed:', options=('Slow', 'Regular', 'Fast'), tooltips=(
→˓'Description of slow', 'Des...

1.1. User Guide 19

ipywidgets Documentation, Release 7.6.2

SelectMultiple

Multiple values can be selected with shift and/or ctrl (or command) pressed and mouse clicks or arrow keys.

[24]: widgets.SelectMultiple(
options=['Apples', 'Oranges', 'Pears'],
value=['Oranges'],
#rows=10,
description='Fruits',
disabled=False

)

SelectMultiple(description='Fruits', index=(1,), options=('Apples', 'Oranges', 'Pears
→˓'), value=('Oranges',))

String widgets

There are several widgets that can be used to display a string value. The Text, Textarea, and Combobox widgets
accept input. The HTML and HTMLMath widgets display a string as HTML (HTMLMath also renders math). The
Label widget can be used to construct a custom control label.

Text

[25]: widgets.Text(
value='Hello World',
placeholder='Type something',
description='String:',
disabled=False

)

Text(value='Hello World', description='String:', placeholder='Type something')

Textarea

[26]: widgets.Textarea(
value='Hello World',
placeholder='Type something',
description='String:',
disabled=False

)

Textarea(value='Hello World', description='String:', placeholder='Type something')

20 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

Combobox

[27]: widgets.Combobox(
value='John',
placeholder='Choose Someone',
options=['Paul', 'John', 'George', 'Ringo'],
description='Combobox:',
ensure_option=True,
disabled=False

)

Combobox(value='', description='Combobox:', ensure_option=True, options=('Paul', 'John
→˓', 'George', 'Ringo'), p...

Label

The Label widget is useful if you need to build a custom description next to a control using similar styling to the
built-in control descriptions.

[28]: widgets.HBox([widgets.Label(value="The m in $E=mc^2$:"), widgets.FloatSlider()])

HBox(children=(Label(value='The m in $E=mc^2$:'), FloatSlider(value=0.0)))

HTML

[29]: widgets.HTML(
value="Hello World",
placeholder='Some HTML',
description='Some HTML',

)

HTML(value='Hello World', description='Some HTML', placeholder='Some HTML')

HTML Math

[30]: widgets.HTMLMath(
value=r"Some math and <i>HTML</i>: \(x^2\) and $$\frac{x+1}{x-1}$$",
placeholder='Some HTML',
description='Some HTML',

)

HTMLMath(value='Some math and <i>HTML</i>: \\(x^2\\) and $$\\frac{x+1}{x-1}$$',
→˓description='Some HTML', place...

1.1. User Guide 21

ipywidgets Documentation, Release 7.6.2

Image

[31]: file = open("images/WidgetArch.png", "rb")
image = file.read()
widgets.Image(

value=image,
format='png',
width=300,
height=400,

)

Image(value=b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x012\x00\x00\x01\xb1\x08\
→˓x06\x00\x00\x00\xe1\xe2:\xb...

Button

[32]: widgets.Button(
description='Click me',
disabled=False,
button_style='', # 'success', 'info', 'warning', 'danger' or ''
tooltip='Click me',
icon='check'

)

Button(description='Click me', icon='check', style=ButtonStyle(), tooltip='Click me')

Output

The Output widget can capture and display stdout, stderr and rich output generated by IPython. For detailed docu-
mentation, see the output widget examples.

Play (Animation) widget

The Play widget is useful to perform animations by iterating on a sequence of integers with a certain speed. The
value of the slider below is linked to the player.

[33]: play = widgets.Play(
interval=10,

value=50,
min=0,
max=100,
step=1,
description="Press play",
disabled=False

)
slider = widgets.IntSlider()
widgets.jslink((play, 'value'), (slider, 'value'))
widgets.HBox([play, slider])

HBox(children=(Play(value=50, description='Press play'), IntSlider(value=0)))

22 Chapter 1. Full Table of Contents

http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#module-IPython.display
https://ipywidgets.readthedocs.io/en/latest/examples/Output%20Widget.html

ipywidgets Documentation, Release 7.6.2

Date picker

The date picker widget works in Chrome, Firefox and IE Edge, but does not currently work in Safari because it does
not support the HTML date input field.

[34]: widgets.DatePicker(
description='Pick a Date',
disabled=False

)

DatePicker(value=None, description='Pick a Date')

Color picker

[35]: widgets.ColorPicker(
concise=False,
description='Pick a color',
value='blue',
disabled=False

)

ColorPicker(value='blue', description='Pick a color')

File Upload

The FileUpload allows to upload any type of file(s) as bytes.

[36]: widgets.FileUpload(
accept='', # Accepted file extension e.g. '.txt', '.pdf', 'image/*', 'image/*,.

→˓pdf'
multiple=False # True to accept multiple files upload else False

)

FileUpload(value={}, description='Upload')

Controller

The Controller allows a game controller to be used as an input device.

[37]: widgets.Controller(
index=0,

)

Controller()

1.1. User Guide 23

ipywidgets Documentation, Release 7.6.2

Container/Layout widgets

These widgets are used to hold other widgets, called children. Each has a children property that may be set either
when the widget is created or later.

Box

[38]: items = [widgets.Label(str(i)) for i in range(4)]
widgets.Box(items)

Box(children=(Label(value='0'), Label(value='1'), Label(value='2'), Label(value='3')))

HBox

[39]: items = [widgets.Label(str(i)) for i in range(4)]
widgets.HBox(items)

HBox(children=(Label(value='0'), Label(value='1'), Label(value='2'), Label(value='3
→˓')))

VBox

[40]: items = [widgets.Label(str(i)) for i in range(4)]
left_box = widgets.VBox([items[0], items[1]])
right_box = widgets.VBox([items[2], items[3]])
widgets.HBox([left_box, right_box])

HBox(children=(VBox(children=(Label(value='0'), Label(value='1'))),
→˓VBox(children=(Label(value='2'), Label(val...

GridBox

This box uses the HTML Grid specification to lay out its children in two dimensional grid. The example below lays
out the 8 items inside in 3 columns and as many rows as needed to accommodate the items.

[41]: items = [widgets.Label(str(i)) for i in range(8)]
widgets.GridBox(items, layout=widgets.Layout(grid_template_columns="repeat(3, 100px)
→˓"))

GridBox(children=(Label(value='0'), Label(value='1'), Label(value='2'), Label(value='3
→˓'), Label(value='4'), La...

24 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

Accordion

[42]: accordion = widgets.Accordion(children=[widgets.IntSlider(), widgets.Text()])
accordion.set_title(0, 'Slider')
accordion.set_title(1, 'Text')
accordion

Accordion(children=(IntSlider(value=0), Text(value='')), _titles={'0': 'Slider', '1':
→˓'Text'})

Tabs

In this example the children are set after the tab is created. Titles for the tabs are set in the same way they are for
Accordion.

[43]: tab_contents = ['P0', 'P1', 'P2', 'P3', 'P4']
children = [widgets.Text(description=name) for name in tab_contents]
tab = widgets.Tab()
tab.children = children
for i in range(len(children)):

tab.set_title(i, str(i))
tab

Tab(children=(Text(value='', description='P0'), Text(value='', description='P1'),
→˓Text(value='', description='...

Accordion and Tab use selected_index, not value

Unlike the rest of the widgets discussed earlier, the container widgets Accordion and Tab update their
selected_index attribute when the user changes which accordion or tab is selected. That means that you can both
see what the user is doing and programmatically set what the user sees by setting the value of selected_index.

Setting selected_index = None closes all of the accordions or deselects all tabs.

In the cells below try displaying or setting the selected_index of the tab and/or accordion.

[44]: tab.selected_index = 3

[45]: accordion.selected_index = None

Nesting tabs and accordions

Tabs and accordions can be nested as deeply as you want. If you have a few minutes, try nesting a few accordions or
putting an accordion inside a tab or a tab inside an accordion.

The example below makes a couple of tabs with an accordion children in one of them

[46]: tab_nest = widgets.Tab()
tab_nest.children = [accordion, accordion]
tab_nest.set_title(0, 'An accordion')
tab_nest.set_title(1, 'Copy of the accordion')
tab_nest

1.1. User Guide 25

ipywidgets Documentation, Release 7.6.2

Tab(children=(Accordion(children=(IntSlider(value=0), Text(value='')), selected_
→˓index=None, _titles={'0': 'Sli...

1.1.5 Output widgets: leveraging Jupyter’s display system

[1]: import ipywidgets as widgets

The Output widget can capture and display stdout, stderr and rich output generated by IPython. You can also append
output directly to an output widget, or clear it programmatically.

[2]: out = widgets.Output(layout={'border': '1px solid black'})
out

Output(layout=Layout(border='1px solid black'))

After the widget is created, direct output to it using a context manager. You can print text to the output area:

[3]: with out:
for i in range(10):

print(i, 'Hello world!')

Rich output can also be directed to the output area. Anything which displays nicely in a Jupyter notebook will also
display well in the Output widget.

[4]: from IPython.display import YouTubeVideo
with out:

display(YouTubeVideo('eWzY2nGfkXk'))

We can even display complex mimetypes, such as nested widgets, in an output widget.

[5]: with out:
display(widgets.IntSlider())

We can also append outputs to the output widget directly with the convenience methods append_stdout,
append_stderr, or append_display_data.

[6]: out = widgets.Output(layout={'border': '1px solid black'})
out.append_stdout('Output appended with append_stdout')
out.append_display_data(YouTubeVideo('eWzY2nGfkXk'))
out

Output(layout=Layout(border='1px solid black'), outputs=({'output_type': 'stream',
→˓'name': 'stdout', 'text': '...

Note that append_display_data cannot currently be used to display widgets. The status of this bug is tracked in
this issue.

We can clear the output by either using IPython.display.clear_output within the context manager, or we
can call the widget’s clear_output method directly.

[7]: out.clear_output()

clear_output supports the keyword argument wait. With this set to True, the widget contents are not cleared
immediately. Instead, they are cleared the next time the widget receives something to display. This can be useful when
replacing content in the output widget: it allows for smoother transitions by avoiding a jarring resize of the widget
following the call to clear_output.

26 Chapter 1. Full Table of Contents

http://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html#module-IPython.display
https://github.com/jupyter-widgets/ipywidgets/issues/1811

ipywidgets Documentation, Release 7.6.2

Finally, we can use an output widget to capture all the output produced by a function using the capture decorator.

[8]: @out.capture()
def function_with_captured_output():

print('This goes into the output widget')
raise Exception('As does this')

function_with_captured_output()

out.capture supports the keyword argument clear_output. Setting this to True will clear the output widget
every time the function is invoked, so that you only see the output of the last invocation. With clear_output set
to True, you can also pass a wait=True argument to only clear the output once new output is available. Of course,
you can also manually clear the output any time as well.

[9]: out.clear_output()

Output widgets as the foundation for interact

The output widget forms the basis of how interact and related methods are implemented. It can also be used by itself to
create rich layouts with widgets and code output. One simple way to customize how an interact UI looks is to use the
interactive_output function to hook controls up to a function whose output is captured in the returned output
widget. In the next example, we stack the controls vertically and then put the output of the function to the right.

[10]: a = widgets.IntSlider(description='a')
b = widgets.IntSlider(description='b')
c = widgets.IntSlider(description='c')
def f(a, b, c):

print('{}*{}*{}={}'.format(a, b, c, a*b*c))

out = widgets.interactive_output(f, {'a': a, 'b': b, 'c': c})

widgets.HBox([widgets.VBox([a, b, c]), out])

HBox(children=(VBox(children=(IntSlider(value=0, description='a'), IntSlider(value=0,
→˓description='b'), IntSli...

Debugging errors in callbacks with the output widget

On some platforms, like JupyterLab, output generated by widget callbacks (for instance, functions attached to the
.observe method on widget traits, or to the .on_click method on button widgets) are not displayed anywhere.
Even on other platforms, it is unclear what cell this output should appear in. This can make debugging errors in
callback functions more challenging.

An effective tool for accessing the output of widget callbacks is to decorate the callback with an output widget’s
capture method. You can then display the widget in a new cell to see the callback output.

[11]: debug_view = widgets.Output(layout={'border': '1px solid black'})

@debug_view.capture(clear_output=True)
def bad_callback(event):

print('This is about to explode')
return 1.0 / 0.0

button = widgets.Button(
description='click me to raise an exception',

(continues on next page)

1.1. User Guide 27

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

layout={'width': '300px'}
)
button.on_click(bad_callback)
button

Button(description='click me to raise an exception', layout=Layout(width='300px'),
→˓style=ButtonStyle())

[12]: debug_view

Output(layout=Layout(border='1px solid black'))

Integrating output widgets with the logging module

While using the .capture decorator works well for understanding and debugging single callbacks, it does not scale
to larger applications. Typically, in larger applications, one might use the logging module to print information on the
status of the program. However, in the case of widget applications, it is unclear where the logging output should go.

A useful pattern is to create a custom handler that redirects logs to an output widget. The output widget can then be
displayed in a new cell to monitor the application while it runs.

[13]: import ipywidgets as widgets
import logging

class OutputWidgetHandler(logging.Handler):
""" Custom logging handler sending logs to an output widget """

def __init__(self, *args, **kwargs):
super(OutputWidgetHandler, self).__init__(*args, **kwargs)
layout = {

'width': '100%',
'height': '160px',
'border': '1px solid black'

}
self.out = widgets.Output(layout=layout)

def emit(self, record):
""" Overload of logging.Handler method """
formatted_record = self.format(record)
new_output = {

'name': 'stdout',
'output_type': 'stream',
'text': formatted_record+'\n'

}
self.out.outputs = (new_output,) + self.out.outputs

def show_logs(self):
""" Show the logs """
display(self.out)

def clear_logs(self):
""" Clear the current logs """
self.out.clear_output()

logger = logging.getLogger(__name__)

(continues on next page)

28 Chapter 1. Full Table of Contents

https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html#handler-objects

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

handler = OutputWidgetHandler()
handler.setFormatter(logging.Formatter('%(asctime)s - [%(levelname)s] %(message)s'))
logger.addHandler(handler)
logger.setLevel(logging.INFO)

[14]: handler.show_logs()

Output(layout=Layout(border='1px solid black', height='160px', width='100%'))

[15]: handler.clear_logs()
logger.info('Starting program')

try:
logger.info('About to try something dangerous...')
1.0/0.0

except Exception as e:
logger.exception('An error occurred!')

Interacting with output widgets from background threads

Jupyter’s display mechanism can be counter-intuitive when displaying output produced by background threads. A
background thread’s output is printed to whatever cell the main thread is currently writing to. To see this directly,
create a thread that repeatedly prints to standard out:

import threading
import time

def run():
for i in itertools.count(0):

time.sleep(1)
print('output from background {}'.format(i))

t = threading.Thread(target=run)
t.start()

This always prints in the currently active cell, not the cell that started the background thread.

This can lead to surprising behaviour in output widgets. During the time in which output is captured by the output
widget, any output generated in the notebook, regardless of thread, will go into the output widget.

The best way to avoid surprises is to never use an output widget’s context manager in a context where multiple
threads generate output. Instead, we can pass an output widget to the function executing in a thread, and use
append_display_data(), append_stdout(), or append_stderr() methods to append displayable out-
put to the output widget.

[16]: import threading
from IPython.display import display, HTML
import ipywidgets as widgets
import time

def thread_func(something, out):
for i in range(1, 5):

time.sleep(0.3)
out.append_stdout('{} {} {}\n'.format(i, '**'*i, something))

out.append_display_data(HTML("All done!"))

(continues on next page)

1.1. User Guide 29

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

display('Display in main thread')
out = widgets.Output()
Now the key: the container is displayed (while empty) in the main thread
display(out)

thread = threading.Thread(
target=thread_func,
args=("some text", out))

thread.start()

'Display in main thread'

Output()

1.1.6 Widget Events

Special events

[1]: from __future__ import print_function

The Button is not used to represent a data type. Instead the button widget is used to handle mouse clicks. The
on_click method of the Button can be used to register function to be called when the button is clicked. The doc
string of the on_click can be seen below.

[2]: import ipywidgets as widgets
print(widgets.Button.on_click.__doc__)

Register a callback to execute when the button is clicked.

The callback will be called with one argument, the clicked button
widget instance.

Parameters

remove: bool (optional)

Set to true to remove the callback from the list of callbacks.

Example

Since button clicks are stateless, they are transmitted from the front-end to the back-end using custom messages. By
using the on_click method, a button that prints a message when it has been clicked is shown below. To capture
prints (or any other kind of output) and ensure it is displayed, be sure to send it to an Output widget (or put the
information you want to display into an HTML widget).

[3]: from IPython.display import display
button = widgets.Button(description="Click Me!")
output = widgets.Output()

display(button, output)

def on_button_clicked(b):

(continues on next page)

30 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

with output:
print("Button clicked.")

button.on_click(on_button_clicked)

Button(description='Click Me!', style=ButtonStyle())

Output()

Traitlet events

Widget properties are IPython traitlets and traitlets are eventful. To handle changes, the observe method of the
widget can be used to register a callback. The doc string for observe can be seen below.

[4]: print(widgets.Widget.observe.__doc__)

Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Parameters

handler : callable

A callable that is called when a trait changes. Its
signature should be ``handler(change)``, where ``change`` is a
dictionary. The change dictionary at least holds a 'type' key.

* ``type``: the type of notification.
Other keys may be passed depending on the value of 'type'. In the
case where type is 'change', we also have the following keys:

* ``owner`` : the HasTraits instance

* ``old`` : the old value of the modified trait attribute

* ``new`` : the new value of the modified trait attribute

* ``name`` : the name of the modified trait attribute.
names : list, str, All

If names is All, the handler will apply to all traits. If a list
of str, handler will apply to all names in the list. If a
str, the handler will apply just to that name.

type : str, All (default: 'change')
The type of notification to filter by. If equal to All, then all
notifications are passed to the observe handler.

Signatures

Mentioned in the doc string, the callback registered must have the signature handler(change) where change is
a dictionary holding the information about the change.

Using this method, an example of how to output an IntSlider’s value as it is changed can be seen below.

[5]: int_range = widgets.IntSlider()
output2 = widgets.Output()

display(int_range, output2)

def on_value_change(change):

(continues on next page)

1.1. User Guide 31

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

with output2:
print(change['new'])

int_range.observe(on_value_change, names='value')

IntSlider(value=0)

Output()

Linking Widgets

Often, you may want to simply link widget attributes together. Synchronization of attributes can be done in a simpler
way than by using bare traitlets events.

Linking traitlets attributes in the kernel

The first method is to use the link and dlink functions from the traitlets module (these two functions are
re-exported by the ipywidgets module for convenience). This only works if we are interacting with a live kernel.

[6]: caption = widgets.Label(value='The values of slider1 and slider2 are synchronized')
sliders1, slider2 = widgets.IntSlider(description='Slider 1'),\

widgets.IntSlider(description='Slider 2')
l = widgets.link((sliders1, 'value'), (slider2, 'value'))
display(caption, sliders1, slider2)

Label(value='The values of slider1 and slider2 are synchronized')

IntSlider(value=0, description='Slider 1')

IntSlider(value=0, description='Slider 2')

[7]: caption = widgets.Label(value='Changes in source values are reflected in target1')
source, target1 = widgets.IntSlider(description='Source'),\

widgets.IntSlider(description='Target 1')
dl = widgets.dlink((source, 'value'), (target1, 'value'))
display(caption, source, target1)

Label(value='Changes in source values are reflected in target1')

IntSlider(value=0, description='Source')

IntSlider(value=0, description='Target 1')

Function traitlets.link and traitlets.dlink return a Link or DLink object. The link can be broken by
calling the unlink method.

[8]: l.unlink()
dl.unlink()

32 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

Registering callbacks to trait changes in the kernel

Since attributes of widgets on the Python side are traitlets, you can register handlers to the change events whenever
the model gets updates from the front-end.

The handler passed to observe will be called with one change argument. The change object holds at least a type key
and a name key, corresponding respectively to the type of notification and the name of the attribute that triggered the
notification.

Other keys may be passed depending on the value of type. In the case where type is change, we also have the
following keys:

• owner : the HasTraits instance

• old : the old value of the modified trait attribute

• new : the new value of the modified trait attribute

• name : the name of the modified trait attribute.

[9]: caption = widgets.Label(value='The values of range1 and range2 are synchronized')
slider = widgets.IntSlider(min=-5, max=5, value=1, description='Slider')

def handle_slider_change(change):
caption.value = 'The slider value is ' + (

'negative' if change.new < 0 else 'nonnegative'
)

slider.observe(handle_slider_change, names='value')

display(caption, slider)

Label(value='The values of range1 and range2 are synchronized')

IntSlider(value=1, description='Slider', max=5, min=-5)

Linking widgets attributes from the client side

When synchronizing traitlets attributes, you may experience a lag because of the latency due to the roundtrip to the
server side. You can also directly link widget attributes in the browser using the link widgets, in either a unidirectional
or a bidirectional fashion.

Javascript links persist when embedding widgets in html web pages without a kernel.

[10]: caption = widgets.Label(value='The values of range1 and range2 are synchronized')
range1, range2 = widgets.IntSlider(description='Range 1'),\

widgets.IntSlider(description='Range 2')
l = widgets.jslink((range1, 'value'), (range2, 'value'))
display(caption, range1, range2)

Label(value='The values of range1 and range2 are synchronized')

IntSlider(value=0, description='Range 1')

IntSlider(value=0, description='Range 2')

[11]: caption = widgets.Label(value='Changes in source_range values are reflected in target_
→˓range1')
source_range, target_range1 = widgets.IntSlider(description='Source range'),\

(continues on next page)

1.1. User Guide 33

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

widgets.IntSlider(description='Target range 1')
dl = widgets.jsdlink((source_range, 'value'), (target_range1, 'value'))
display(caption, source_range, target_range1)

Label(value='Changes in source_range values are reflected in target_range1')

IntSlider(value=0, description='Source range')

IntSlider(value=0, description='Target range 1')

Function widgets.jslink returns a Link widget. The link can be broken by calling the unlink method.

[12]: # l.unlink()
dl.unlink()

The difference between linking in the kernel and linking in the client

Linking in the kernel means linking via python. If two sliders are linked in the kernel, when one slider is changed the
browser sends a message to the kernel (python in this case) updating the changed slider, the link widget in the kernel
then propagates the change to the other slider object in the kernel, and then the other slider’s kernel object sends a
message to the browser to update the other slider’s views in the browser. If the kernel is not running (as in a static web
page), then the controls will not be linked.

Linking using jslink (i.e., on the browser side) means contructing the link in Javascript. When one slider is changed,
Javascript running in the browser changes the value of the other slider in the browser, without needing to communicate
with the kernel at all. If the sliders are attached to kernel objects, each slider will update their kernel-side objects
independently.

To see the difference between the two, go to the static version of this page in the ipywidgets documentation and try out
the sliders near the bottom. The ones linked in the kernel with link and dlink are no longer linked, but the ones
linked in the browser with jslink and jsdlink are still linked.

Continuous updates

Some widgets offer a choice with their continuous_update attribute between continually updating values or only
updating values when a user submits the value (for example, by pressing Enter or navigating away from the control).
In the next example, we see the “Delayed” controls only transmit their value after the user finishes dragging the slider
or submitting the textbox. The “Continuous” controls continually transmit their values as they are changed. Try typing
a two-digit number into each of the text boxes, or dragging each of the sliders, to see the difference.

[13]: a = widgets.IntSlider(description="Delayed", continuous_update=False)
b = widgets.IntText(description="Delayed", continuous_update=False)
c = widgets.IntSlider(description="Continuous", continuous_update=True)
d = widgets.IntText(description="Continuous", continuous_update=True)

widgets.link((a, 'value'), (b, 'value'))
widgets.link((a, 'value'), (c, 'value'))
widgets.link((a, 'value'), (d, 'value'))
widgets.VBox([a,b,c,d])

VBox(children=(IntSlider(value=0, continuous_update=False, description='Delayed'),
→˓IntText(value=0, descriptio...

Sliders, Text, and Textarea controls default to continuous_update=True. IntText and other text boxes
for entering integer or float numbers default to continuous_update=False (since often you’ll want to type an
entire number before submitting the value by pressing enter or navigating out of the box).

34 Chapter 1. Full Table of Contents

http://ipywidgets.readthedocs.io/en/latest/examples/Widget%20Events.html

ipywidgets Documentation, Release 7.6.2

1.1.7 Layout and Styling of Jupyter widgets

This notebook presents how to layout and style Jupyter interactive widgets to build rich and reactive widget-based
applications.

You can jump directly to these sections:

• The ``layout` attribute <#The-layout-attribute>`__

• The Flexbox layout

• Predefined styles

• The ``style` attribute <#The-style-attribute>`__

• The Grid layout

• `Image layout and sizing <#Image-layout-and-sizing>`__

The layout attribute

Jupyter interactive widgets have a layout attribute exposing a number of CSS properties that impact how widgets
are laid out.

Exposed CSS properties

The following properties map to the values of the CSS properties of the same name (underscores being replaced with
dashes), applied to the top DOM elements of the corresponding widget.

Sizes

• height

• width

• max_height

• max_width

• min_height

• min_width

Display

• visibility

• display

• overflow

• overflow_x (deprecated)

• overflow_y (deprecated)

1.1. User Guide 35

ipywidgets Documentation, Release 7.6.2

Box model

• border

• margin

• padding

Positioning

• top

• left

• bottom

• right

Flexbox

• order

• flex_flow

• align_items

• flex

• align_self

• align_content

• justify_content

Grid layout

• grid_auto_columns

• grid_auto_flow

• grid_auto_rows

• grid_gap

• grid_template

• grid_row

• grid_column

36 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

Shorthand CSS properties

You may have noticed that certain CSS properties such as margin-[top/right/bottom/left] seem to be
missing. The same holds for padding-[top/right/bottom/left] etc.

In fact, you can atomically specify [top/right/bottom/left] margins via the margin attribute alone by
passing the string '100px 150px 100px 80px' for a respectively top, right, bottom and left margins
of 100, 150, 100 and 80 pixels.

Similarly, the flex attribute can hold values for flex-grow, flex-shrink and flex-basis. The border
attribute is a shorthand property for border-width, border-style (required), and border-color.

Simple examples

The following example shows how to resize a Button so that its views have a height of 80px and a width of 50% of
the available space:

[1]: from ipywidgets import Button, Layout

b = Button(description='(50% width, 80px height) button',
layout=Layout(width='50%', height='80px'))

b

Button(description='(50% width, 80px height) button', layout=Layout(height='80px',
→˓width='50%'), style=ButtonS...

The layout property can be shared between multiple widgets and assigned directly.

[2]: Button(description='Another button with the same layout', layout=b.layout)

Button(description='Another button with the same layout', layout=Layout(height='80px',
→˓ width='50%'), style=But...

Description

You may have noticed that long descriptions are truncated. This is because the description length is, by default, fixed.

[3]: from ipywidgets import IntSlider

IntSlider(description='A too long description')

IntSlider(value=0, description='A too long description')

You can change the length of the description to fit the description text. However, this will make the widget itself
shorter. You can change both by adjusting the description width and the widget width using the widget’s style.

[4]: style = {'description_width': 'initial'}
IntSlider(description='A too long description', style=style)

IntSlider(value=0, description='A too long description',
→˓style=SliderStyle(description_width='initial'))

If you need more flexibility to lay out widgets and descriptions, you can use Label widgets directly.

[5]: from ipywidgets import HBox, Label

HBox([Label('A too long description'), IntSlider()])

1.1. User Guide 37

ipywidgets Documentation, Release 7.6.2

HBox(children=(Label(value='A too long description'), IntSlider(value=0)))

Natural sizes, and arrangements using HBox and VBox

Most of the core-widgets have default heights and widths that tile well together. This allows simple layouts based on
the HBox and VBox helper functions to align naturally:

[6]: from ipywidgets import Button, HBox, VBox

words = ['correct', 'horse', 'battery', 'staple']
items = [Button(description=w) for w in words]
left_box = VBox([items[0], items[1]])
right_box = VBox([items[2], items[3]])
HBox([left_box, right_box])

HBox(children=(VBox(children=(Button(description='correct', style=ButtonStyle()),
→˓Button(description='horse', ...

Latex

Widgets such as sliders and text inputs have a description attribute that can render Latex Equations. The Label
widget also renders Latex equations.

[7]: from ipywidgets import IntSlider, Label

[8]: IntSlider(description=r'\(\int_0^t f\)')

IntSlider(value=0, description='\\(\\int_0^t f\\)')

[9]: Label(value=r'\(e=mc^2\)')

Label(value='\\(e=mc^2\\)')

Number formatting

Sliders have a readout field which can be formatted using Python’s Format Specification Mini-Language. If the space
available for the readout is too narrow for the string representation of the slider value, a different styling is applied to
show that not all digits are visible.

The Flexbox layout

The HBox and VBox classes above are special cases of the Box widget.

The Box widget enables the entire CSS flexbox spec as well as the Grid layout spec, enabling rich reactive layouts
in the Jupyter notebook. It aims at providing an efficient way to lay out, align and distribute space among items in a
container.

Again, the whole flexbox spec is exposed via the layout attribute of the container widget (Box) and the contained
items. One may share the same layout attribute among all the contained items.

38 Chapter 1. Full Table of Contents

https://docs.python.org/3/library/string.html#format-specification-mini-language

ipywidgets Documentation, Release 7.6.2

Acknowledgement

The following flexbox tutorial on the flexbox layout follows the lines of the article A Complete Guide to Flexbox by
Chris Coyier, and uses text and various images from the article with permission.

Basics and terminology

Since flexbox is a whole module and not a single property, it involves a lot of things including its whole set of
properties. Some of them are meant to be set on the container (parent element, known as “flex container”) whereas the
others are meant to be set on the children (known as “flex items”).

If regular layout is based on both block and inline flow directions, the flex layout is based on “flex-flow directions”.
Please have a look at this figure from the specification, explaining the main idea behind the flex layout.

Basically, items will be laid out following either the main axis (from main-start to main-end) or the cross
axis (from cross-start to cross-end).

• main axis - The main axis of a flex container is the primary axis along which flex items are laid out. Beware,
it is not necessarily horizontal; it depends on the flex-direction property (see below).

• main-start | main-end - The flex items are placed within the container starting from main-start and
going to main-end.

• main size - A flex item’s width or height, whichever is in the main dimension, is the item’s main size. The
flex item’s main size property is either the ‘width’ or ‘height’ property, whichever is in the main dimension.
cross axis - The axis perpendicular to the main axis is called the cross axis. Its direction depends on the main
axis direction.

• cross-start | cross-end - Flex lines are filled with items and placed into the container starting on the
cross-start side of the flex container and going toward the cross-end side.

• cross size - The width or height of a flex item, whichever is in the cross dimension, is the item’s cross size.
The cross size property is whichever of ‘width’ or ‘height’ that is in the cross dimension.

1.1. User Guide 39

https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/license/

ipywidgets Documentation, Release 7.6.2

Properties of the parent

display

display can be flex or inline-flex. This defines a flex container (block or inline).

flex-flow

flex-flow is a shorthand for the flex-direction and flex-wrap properties, which together define the flex
container’s main and cross axes. Default is row nowrap.

• flex-direction (column-reverse | column | row | row-reverse)

This establishes the main-axis, thus defining the direction flex items are placed in the flex container. Flexbox
is (aside from optional wrapping) a single-direction layout concept. Think of flex items as primarily laying out
either in horizontal rows or vertical columns.

• flex-wrap (nowrap | wrap | wrap-reverse)

By default, flex items will all try to fit onto one line. You can change that and allow the items to wrap as needed
with this property. Direction also plays a role here, determining the direction new lines are stacked in.

justify-content

justify-content can be one of flex-start, flex-end, center, space-between, space-around.
This defines the alignment along the main axis. It helps distribute extra free space left over when either all the flex
items on a line are inflexible, or are flexible but have reached their maximum size. It also exerts some control over the
alignment of items when they overflow the line.

align-items

align-items can be one of flex-start, flex-end, center, baseline, stretch. This defines the
default behaviour for how flex items are laid out along the cross axis on the current line. Think of it as the justify-
content version for the cross-axis (perpendicular to the main-axis).

align-content

align-content can be one of flex-start, flex-end, center, baseline, stretch. This aligns a flex
container’s lines within when there is extra space in the cross-axis, similar to how justify-content aligns individual
items within the main-axis.

Note: this property has no effect when there is only one line of flex items.

40 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

Properties of the items

The flexbox-related CSS properties of the items have no impact if the parent element is not a flexbox container (i.e. has
a display attribute equal to flex or inline-flex).

order

By default, flex items are laid out in the source order. However, the order property controls the order in which they
appear in the flex container.

flex

flex is shorthand for three properties, flex-grow, flex-shrink and flex-basis combined. The second and
third parameters (flex-shrink and flex-basis) are optional. Default is 0 1 auto.

• flex-grow

This defines the ability for a flex item to grow if necessary. It accepts a unitless value that serves as a proportion.
It dictates what amount of the available space inside the flex container the item should take up.

If all items have flex-grow set to 1, the remaining space in the container will be distributed equally to all children.
If one of the children a value of 2, the remaining space would take up twice as much space as the others (or it
will try to, at least).

• flex-shrink

This defines the ability for a flex item to shrink if necessary.

• flex-basis

This defines the default size of an element before the remaining space is distributed. It can be a length (e.g. 20%,
5rem, etc.) or a keyword. The auto keyword means “look at my width or height property”.

align-self

align-self allows the default alignment (or the one specified by align-items) to be overridden for individual flex
items.

The VBox and HBox helpers

The VBox and HBox helper classes provide simple defaults to arrange child widgets in vertical and horizontal boxes.
They are roughly equivalent to:

def VBox(*pargs, **kwargs):
"""Displays multiple widgets vertically using the flexible box model."""
box = Box(*pargs, **kwargs)
box.layout.display = 'flex'
box.layout.flex_flow = 'column'
box.layout.align_items = 'stretch'
return box

(continues on next page)

1.1. User Guide 41

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

def HBox(*pargs, **kwargs):
"""Displays multiple widgets horizontally using the flexible box model."""
box = Box(*pargs, **kwargs)
box.layout.display = 'flex'
box.layout.align_items = 'stretch'
return box

Examples

Four buttons in a VBox. Items stretch to the maximum width, in a vertical box taking ``50%`` of the available
space.

[10]: from ipywidgets import Layout, Button, Box

items_layout = Layout(width='auto') # override the default width of the button
→˓to 'auto' to let the button grow

box_layout = Layout(display='flex',
flex_flow='column',
align_items='stretch',
border='solid',
width='50%')

words = ['correct', 'horse', 'battery', 'staple']
items = [Button(description=word, layout=items_layout, button_style='danger') for
→˓word in words]
box = Box(children=items, layout=box_layout)
box

Box(children=(Button(button_style='danger', description='correct',
→˓layout=Layout(width='auto'), style=ButtonSt...

Three buttons in an HBox. Items flex proportionally to their weight.

[11]: from ipywidgets import Layout, Button, Box, VBox

Items flex proportionally to the weight and the left over space around the text
items_auto = [

Button(description='weight=1; auto', layout=Layout(flex='1 1 auto', width='auto'),
→˓ button_style='danger'),

Button(description='weight=3; auto', layout=Layout(flex='3 1 auto', width='auto'),
→˓ button_style='danger'),

Button(description='weight=1; auto', layout=Layout(flex='1 1 auto', width='auto'),
→˓ button_style='danger'),
]

Items flex proportionally to the weight
items_0 = [

Button(description='weight=1; 0%', layout=Layout(flex='1 1 0%', width='auto'),
→˓button_style='danger'),

Button(description='weight=3; 0%', layout=Layout(flex='3 1 0%', width='auto'),
→˓button_style='danger'),

Button(description='weight=1; 0%', layout=Layout(flex='1 1 0%', width='auto'),
→˓button_style='danger'),

(continues on next page)

42 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

]
box_layout = Layout(display='flex',

flex_flow='row',
align_items='stretch',
width='70%')

box_auto = Box(children=items_auto, layout=box_layout)
box_0 = Box(children=items_0, layout=box_layout)
VBox([box_auto, box_0])

VBox(children=(Box(children=(Button(button_style='danger', description='weight=1; auto
→˓', layout=Layout(flex='1...

A more advanced example: a reactive form.

The form is a VBox of width ‘50%’. Each row in the VBox is an HBox, that justifies the content with space between..

[12]: from ipywidgets import Layout, Button, Box, FloatText, Textarea, Dropdown, Label,
→˓IntSlider

form_item_layout = Layout(
display='flex',
flex_flow='row',
justify_content='space-between'

)

form_items = [
Box([Label(value='Age of the captain'), IntSlider(min=40, max=60)], layout=form_

→˓item_layout),
Box([Label(value='Egg style'),

Dropdown(options=['Scrambled', 'Sunny side up', 'Over easy'])], layout=form_
→˓item_layout),

Box([Label(value='Ship size'),
FloatText()], layout=form_item_layout),

Box([Label(value='Information'),
Textarea()], layout=form_item_layout)

]

form = Box(form_items, layout=Layout(
display='flex',
flex_flow='column',
border='solid 2px',
align_items='stretch',
width='50%'

))
form

Box(children=(Box(children=(Label(value='Age of the captain'), IntSlider(value=40,
→˓max=60, min=40)), layout=La...

A more advanced example: a carousel.

[13]: from ipywidgets import Layout, Button, VBox, Label

item_layout = Layout(height='100px', min_width='40px')
items = [Button(layout=item_layout, description=str(i), button_style='warning') for i
→˓in range(40)]
box_layout = Layout(overflow='scroll hidden',

border='3px solid black',

(continues on next page)

1.1. User Guide 43

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

width='500px',
height='',
flex_flow='row',
display='flex')

carousel = Box(children=items, layout=box_layout)
VBox([Label('Scroll horizontally:'), carousel])

VBox(children=(Label(value='Scroll horizontally:'), Box(children=(Button(button_style=
→˓'warning', description='...

Predefined styles

If you wish the styling of widgets to make use of colors and styles defined by the environment (to be consistent with
e.g. a notebook theme), many widgets enable choosing in a list of pre-defined styles.

For example, the Button widget has a button_style attribute that may take 5 different values:

• 'primary'

• 'success'

• 'info'

• 'warning'

• 'danger'

besides the default empty string ”.

[14]: from ipywidgets import Button

Button(description='Danger Button', button_style='danger')

Button(button_style='danger', description='Danger Button', style=ButtonStyle())

The style attribute

While the layout attribute only exposes layout-related CSS properties for the top-level DOM element of widgets,
the
style attribute is used to expose non-layout related styling attributes of widgets.

However, the properties of the style attribute are specific to each widget type.

[15]: b1 = Button(description='Custom color')
b1.style.button_color = 'lightgreen'
b1

Button(description='Custom color', style=ButtonStyle(button_color='lightgreen'))

You can get a list of the style attributes for a widget with the keys property.

[16]: b1.style.keys

[16]: ['_model_module',
'_model_module_version',
'_model_name',

(continues on next page)

44 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

'_view_count',
'_view_module',
'_view_module_version',
'_view_name',
'button_color',
'font_weight']

Just like the layout attribute, widget styles can be assigned to other widgets.

[17]: b2 = Button()
b2.style = b1.style
b2

Button(style=ButtonStyle(button_color='lightgreen'))

Widget styling attributes are specific to each widget type.

[18]: s1 = IntSlider(description='Blue handle')
s1.style.handle_color = 'lightblue'
s1

IntSlider(value=0, description='Blue handle', style=SliderStyle(handle_color=
→˓'lightblue'))

The Grid layout

The GridBox class is a special case of the Box widget.

The Box widget enables the entire CSS flexbox spec, enabling rich reactive layouts in the Jupyter notebook. It aims
at providing an efficient way to lay out, align and distribute space among items in a container.

Again, the whole grid layout spec is exposed via the layout attribute of the container widget (Box) and the contained
items. One may share the same layout attribute among all the contained items.

The following flexbox tutorial on the flexbox layout follows the lines of the article A Complete Guide to Grid by Chris
House, and uses text and various images from the article with permission.

Basics and browser support

To get started you have to define a container element as a grid with display: grid, set the column and row sizes with
grid-template-rows, grid-template-columns, and grid_template_areas, and then place its child elements into the grid
with grid-column and grid-row. Similarly to flexbox, the source order of the grid items doesn’t matter. Your CSS can
place them in any order, which makes it super easy to rearrange your grid with media queries. Imagine defining the
layout of your entire page, and then completely rearranging it to accommodate a different screen width all with only a
couple lines of CSS. Grid is one of the most powerful CSS modules ever introduced.

As of March 2017, most browsers shipped native, unprefixed support for CSS Grid: Chrome (including on Android),
Firefox, Safari (including on iOS), and Opera. Internet Explorer 10 and 11 on the other hand support it, but it’s an old
implementation with an outdated syntax. The time to build with grid is now!

1.1. User Guide 45

https://css-tricks.com/snippets/css/complete-guide-grid/
https://css-tricks.com/license/

ipywidgets Documentation, Release 7.6.2

Important terminology

Before diving into the concepts of Grid it’s important to understand the terminology. Since the terms involved here are
all kinda conceptually similar, it’s easy to confuse them with one another if you don’t first memorize their meanings
defined by the Grid specification. But don’t worry, there aren’t many of them.

Grid Container

The element on which display: grid is applied. It’s the direct parent of all the grid items. In this example
container is the grid container.

<div class="container">
<div class="item item-1"></div>
<div class="item item-2"></div>
<div class="item item-3"></div>

</div>

Grid Item

The children (e.g. direct descendants) of the grid container. Here the item elements are grid items, but sub-item isn’t.

<div class="container">
<div class="item"></div>
<div class="item">
<p class="sub-item"></p>

</div>
<div class="item"></div>

</div>

Grid Line

The dividing lines that make up the structure of the grid. They can be either vertical (“column grid lines”) or horizontal
(“row grid lines”) and reside on either side of a row or column. Here the yellow line is an example of a column grid
line.

Grid Track

The space between two adjacent grid lines. You can think of them like the columns or rows of the grid. Here’s the grid
track between the second and third row grid lines.

46 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

Grid Cell

The space between two adjacent row and two adjacent column grid lines. It’s a single “unit” of the grid. Here’s the
grid cell between row grid lines 1 and 2, and column grid lines 2 and 3.

Grid Area

The total space surrounded by four grid lines. A grid area may be comprised of any number of grid cells. Here’s the
grid area between row grid lines 1 and 3, and column grid lines 1 and 3.

1.1. User Guide 47

ipywidgets Documentation, Release 7.6.2

Properties of the parent

grid-template-rows, grid-template-colums

Defines the columns and rows of the grid with a space-separated list of values. The values represent the track size, and
the space between them represents the grid line.

Values:

• <track-size> - can be a length, a percentage, or a fraction of the free space in the grid (using the fr unit)

• <line-name> - an arbitrary name of your choosing

grid-template-areas

Defines a grid template by referencing the names of the grid areas which are specified with the grid-area property.
Repeating the name of a grid area causes the content to span those cells. A period signifies an empty cell. The syntax
itself provides a visualization of the structure of the grid.

Values:

• <grid-area-name> - the name of a grid area specified with grid-area

• . - a period signifies an empty grid cell

• none - no grid areas are defined

grid-gap

A shorthand for grid-row-gap and grid-column-gap

Values:

• <grid-row-gap>, <grid-column-gap> - length values

where grid-row-gap and grid-column-gap specify the sizes of the grid lines. You can think of it like setting
the width of the gutters between the columns / rows.

• <line-size> - a length value

Note: The ``grid-`` prefix will be removed and ``grid-gap`` renamed to ``gap``. The unprefixed property is already
supported in Chrome 68+, Safari 11.2 Release 50+ and Opera 54+.

align-items

Aligns grid items along the block (column) axis (as opposed to justify-items which aligns along the inline (row) axis).
This value applies to all grid items inside the container.

Values:

• start - aligns items to be flush with the start edge of their cell

• end - aligns items to be flush with the end edge of their cell

• center - aligns items in the center of their cell

• stretch - fills the whole height of the cell (this is the default)

justify-items

Aligns grid items along the inline (row) axis (as opposed to align-items which aligns along the block (column)
axis). This value applies to all grid items inside the container.

Values:

• start - aligns items to be flush with the start edge of their cell

• end - aligns items to be flush with the end edge of their cell

48 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

• center - aligns items in the center of their cell

• stretch - fills the whole width of the cell (this is the default)

align-content

Sometimes the total size of your grid might be less than the size of its grid container. This could happen if all of your
grid items are sized with non-flexible units like px. In this case you can set the alignment of the grid within the grid
container. This property aligns the grid along the block (column) axis (as opposed to justify-content which aligns the
grid along the inline (row) axis).

Values:

• start - aligns the grid to be flush with the start edge of the grid container

• end - aligns the grid to be flush with the end edge of the grid container

• center - aligns the grid in the center of the grid container

• stretch - resizes the grid items to allow the grid to fill the full height of the grid container

• space-around - places an even amount of space between each grid item, with half-sized spaces on the far
ends

• space-between - places an even amount of space between each grid item, with no space at the far ends

• space-evenly - places an even amount of space between each grid item, including the far ends

justify-content

Sometimes the total size of your grid might be less than the size of its grid container. This could happen if all of your
grid items are sized with non-flexible units like px. In this case you can set the alignment of the grid within the grid
container. This property aligns the grid along the inline (row) axis (as opposed to align-content which aligns the grid
along the block (column) axis).

Values:

• start - aligns the grid to be flush with the start edge of the grid container

• end - aligns the grid to be flush with the end edge of the grid container

• center - aligns the grid in the center of the grid container

• stretch - resizes the grid items to allow the grid to fill the full width of the grid container

• space-around - places an even amount of space between each grid item, with half-sized spaces on the far
ends

• space-between - places an even amount of space between each grid item, with no space at the far ends

• space-evenly - places an even amount of space between each grid item, including the far ends

grid-auto-columns, grid-auto-rows

Specifies the size of any auto-generated grid tracks (aka implicit grid tracks). Implicit tracks get created when there
are more grid items than cells in the grid or when a grid item is placed outside of the explicit grid. (see The Difference
Between Explicit and Implicit Grids)

Values:

• <track-size> - can be a length, a percentage, or a fraction of the free space in the grid (using the fr unit)

1.1. User Guide 49

ipywidgets Documentation, Release 7.6.2

Properties of the items

Note: ``float``, ``display: inline-block``, ``display: table-cell``, ``vertical-align`` and ``column-??`` properties have
no effect on a grid item.

grid-column, grid-row

Determines a grid item’s location within the grid by referring to specific grid lines.
grid-column-start/grid-row-start is the line where the item begins, and
grid-column-end/grid-row-end is the line where the item ends.

Values:

• <line> - can be a number to refer to a numbered grid line, or a name to refer to a named grid line

• span <number> - the item will span across the provided number of grid tracks

• span <name> - the item will span across until it hits the next line with the provided name

• auto - indicates auto-placement, an automatic span, or a default span of one

.item {
grid-column: <number> | <name> | span <number> | span <name> | auto /

<number> | <name> | span <number> | span <name> | auto
grid-row: <number> | <name> | span <number> | span <name> | auto /

<number> | <name> | span <number> | span <name> | auto
}

Examples:

.item-a {
grid-column: 2 / five;
grid-row: row1-start / 3;

}

50 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

.item-b {
grid-column: 1 / span col4-start;
grid-row: 2 / span 2;

}

If no grid-column / grid-row is declared, the item will span 1 track by default.

Items can overlap each other. You can use z-index to control their stacking order.

grid-area

Gives an item a name so that it can be referenced by a template created with the grid-template-areas
property. Alternatively, this property can be used as an even shorter shorthand for grid-row-start +
grid-column-start + grid-row-end + grid-column-end.

Values:

• <name> - a name of your choosing

• <row-start> / <column-start> / <row-end> / <column-end> - can be numbers or named
lines

.item {
grid-area: <name> | <row-start> / <column-start> / <row-end> / <column-end>;

}

Examples:

As a way to assign a name to the item:

.item-d {
grid-area: header

}

1.1. User Guide 51

ipywidgets Documentation, Release 7.6.2

As the short-shorthand for grid-row-start + grid-column-start + grid-row-end +
grid-column-end:

.item-d {
grid-area: 1 / col4-start / last-line / 6

}

justify-self

Aligns a grid item inside a cell along the inline (row) axis (as opposed to align-self which aligns along the block
(column) axis). This value applies to a grid item inside a single cell.

Values:

• start - aligns the grid item to be flush with the start edge of the cell

• end - aligns the grid item to be flush with the end edge of the cell

• center - aligns the grid item in the center of the cell

• stretch - fills the whole width of the cell (this is the default)

.item {
justify-self: start | end | center | stretch;

}

Examples:

.item-a {
justify-self: start;

}

52 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

.item-a {
justify-self: end;

}

.item-a {
justify-self: center;

}

.item-a {
justify-self: stretch;

}

To set alignment for all the items in a grid, this behavior can also be set on the grid container via the justify-items
property.

[19]: from ipywidgets import Button, GridBox, Layout, ButtonStyle

Placing items by name:

1.1. User Guide 53

ipywidgets Documentation, Release 7.6.2

[20]: header = Button(description='Header',
layout=Layout(width='auto', grid_area='header'),
style=ButtonStyle(button_color='lightblue'))

main = Button(description='Main',
layout=Layout(width='auto', grid_area='main'),
style=ButtonStyle(button_color='moccasin'))

sidebar = Button(description='Sidebar',
layout=Layout(width='auto', grid_area='sidebar'),
style=ButtonStyle(button_color='salmon'))

footer = Button(description='Footer',
layout=Layout(width='auto', grid_area='footer'),
style=ButtonStyle(button_color='olive'))

GridBox(children=[header, main, sidebar, footer],
layout=Layout(

width='50%',
grid_template_rows='auto auto auto',
grid_template_columns='25% 25% 25% 25%',
grid_template_areas='''
"header header header header"
"main main . sidebar "
"footer footer footer footer"
''')

)

GridBox(children=(Button(description='Header', layout=Layout(grid_area='header',
→˓width='auto'), style=ButtonSt...

Setting up row and column template and gap

[21]: GridBox(children=[Button(layout=Layout(width='auto', height='auto'),
style=ButtonStyle(button_color='darkseagreen')) for i in

→˓range(9)
],

layout=Layout(
width='50%',
grid_template_columns='100px 50px 100px',
grid_template_rows='80px auto 80px',
grid_gap='5px 10px')

)

GridBox(children=(Button(layout=Layout(height='auto', width='auto'),
→˓style=ButtonStyle(button_color='darkseagr...

Image layout and sizing

The layout and sizing of images is a little different than for other elements for a combination of historical reasons (the
HTML tag img existed before CSS) and practical reasons (an image has an intrinsic size).

Sizing of images is particularly confusing because there are two plausible ways to specify the size of an image. The
Image widget has attributes width and height that correspond to attributes of the same name on the HTML img
tag. In addition, the Image widget, like every other widget, has a layout, which also has a width and height.

In addition, some CSS styling is applied to images that is not applied to other widgets: max_width is set to 100%
and height is set to auto.

You should not rely on Image.width or Image.height to determine the display width and height of the image
widget. Any CSS styling, whether via Image.layout or some other source, will override Image.width and

54 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

Image.height.

When displaying an Image widget by itself, setting Image.layout.width to the desired width will display the
Image widget with the same aspect ratio as the original image.

When placing an Image inside a Box (or HBox or VBox) the result depends on whether a width has been set on
the Box. If it has, then the image will be stretched (or compressed) to fit within the box because Image.layout.
max_width is 100% so the image fills the container. This will usually not preserve the aspect ratio of image.

Controlling the display of an Image inside a container

Use Image.layout.object_fit to control how an image is scaled inside a container like a box. The possible
values are:

• 'contain': Fit the image in its content box while preserving the aspect ratio. If any of the container is not
covered by the image, the background of the container is displayed. The content box is the size of the container
if the container is smaller than the image, or the size of the image if the container is larger.

• 'cover': Fill the content box completely while preserving the aspect ratio of the image, cropping the image
if necessary.

• 'fill': Completely fill the content box, stretching/compressing the image as necessary.

• 'none': Do no resizing; image will be clipped by the container.

• 'scale-down': Do the same thing as either contain or none, using whichever results in the smaller
dispayed image.

• None (the Python value): Remove object_fit from the layout; effect is same as 'fill'.

Use Image.layout.object_position to control how where an image is positioned within a container
like a box. The default value ensures that the image is centered in the box. The effect of Image.layout.
object_position depends, in some cases, on the value of Image.layout.object_fit.

There are severl ways to specify the value for object_position, described below.

Examples of object_fit

In the example below an image is displayed inside a green box to demonstrate each of the values for object_fit.

To keep the example uniform, define common code here.

[22]: from ipywidgets import Layout, Box, VBox, HBox, HTML, Image

fit_options = ['contain', 'cover', 'fill', 'scale-down', 'none', None]

hbox_layout = Layout()
hbox_layout.width = '100%'
hbox_layout.justify_content = 'space-around'

green_box_layout = Layout()
green_box_layout.width = '100px'
green_box_layout.height = '100px'
green_box_layout.border = '2px solid green'

def make_box_for_grid(image_widget, fit):
"""

(continues on next page)

1.1. User Guide 55

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

Make a VBox to hold caption/image for demonstrating
option_fit values.
"""
Make the caption
if fit is not None:

fit_str = "'{}'".format(fit)
else:

fit_str = str(fit)

h = HTML(value='' + str(fit_str) + '')

Make the green box with the image widget inside it
boxb = Box()
boxb.layout = green_box_layout
boxb.children = [image_widget]

Compose into a vertical box
vb = VBox()
vb.layout.align_items = 'center'
vb.children = [h, boxb]
return vb

Use this margin to eliminate space between the image and the box
image_margin = '0 0 0 0'

Set size of captions in figures below
caption_size = 'h4'

object_fit in a Box smaller than the original image

The effect of each can be seen in the image below. In each case, the image is in a box with a green border. The original
image is 600x300 and the grid boxes in the image are squares. Since the image is wider than the box width, the content
box is the size of the container.

[23]: with open('images/gaussian_with_grid.png', 'rb') as f:
im_600_300 = f.read()

[24]: boxes = []
for fit in fit_options:

ib = Image(value=im_600_300)
ib.layout.object_fit = fit
ib.layout.margin = image_margin

boxes.append(make_box_for_grid(ib, fit))

vb = VBox()
h = HTML(value='<{size}>Examples of <code>object_fit</code> with large image</{size}>
→˓'.format(size=caption_size))
vb.layout.align_items = 'center'
hb = HBox()
hb.layout = hbox_layout
hb.children = boxes

vb.children = [h, hb]
vb

56 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

VBox(children=(HTML(value='<h4>Examples of <code>object_fit</code> with large image</
→˓h4>'), HBox(children=(VBo...

object_fit in a Box larger than the original image

The effect of each can be seen in the image below. In each case, the image is in a box with a green border. The original
image is 50x25 and the grid boxes in the image are squares.

[25]: with open('images/gaussian_with_grid_tiny.png', 'rb') as f:
im_50_25 = f.read()

[26]: boxes = []
for fit in fit_options:

ib = Image(value=im_50_25)
ib.layout.object_fit = fit
ib.layout.margin = image_margin
boxes.append(make_box_for_grid(ib, fit))

vb = VBox()
h = HTML(value='<{size}>Examples of <code>object_fit</code> with small image</{size}>
→˓'.format(size=caption_size))
vb.layout.align_items = 'center'
hb = HBox()
hb.layout = hbox_layout
hb.children = boxes

vb.children = [h, hb]
vb

VBox(children=(HTML(value='<h4>Examples of <code>object_fit</code> with small image</
→˓h4>'), HBox(children=(VBo...

It may be surprising, given the description of the values for option_fit, that in none of the cases does the image
actually fill the box. The reason is that the underlying image is only 50 pixels wide, half the width of the box, so fill
and cover mean “fill/cover the content box determined by the size of the image”.

object_fit in a Box larger than the original image: use image layout width 100% to fill container

If the width of the image’s layout is set to 100% it will fill the box in which it is placed. This example also illustrates
the difference between 'contain' and 'scale-down'. The effect of 'scale-down' is either the same as
'contain' or 'none', whichever leads to the smaller displayed image. In this case, the smaller image comes from
doing no fitting, so that is what is displayed.

[27]: boxes = []
for fit in fit_options:

ib = Image(value=im_50_25)
ib.layout.object_fit = fit
ib.layout.margin = image_margin

NOTE WIDTH IS SET TO 100%
ib.layout.width = '100%'

boxes.append(make_box_for_grid(ib, fit))

(continues on next page)

1.1. User Guide 57

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

vb = VBox()
h = HTML(value='<{size}>Examples of <code>object_fit</code> with image '

'smaller than container</{size}>'.format(size=caption_size))
vb.layout.align_items = 'center'
hb = HBox()
hb.layout = hbox_layout
hb.children = boxes

vb.children = [h, hb]
vb

VBox(children=(HTML(value='<h4>Examples of <code>object_fit</code> with image smaller
→˓than container</h4>'), H...

Examples of object_position

There are several ways to set object position:

• Use keywords like top and left to describe how the image should be placed in the container.

• Use two positions, in pixels, for the offset from the top, left corner of the container to the top, left corner of the
image. The offset may be positive or negative, and can be used to position the image outside of the box.

• Use a percentage for the offset in each direction. The percentage is a the fraction of the vertical or horizontal
whitespace around the image if the image is smaller than the container, or the portion of the image outside the
container if the image is larger than the container.

• A mix of pixel and percent offsets.

• A mix of keywords and offsets.

Image scaling as determined by object_fitwill take precendence over the positioning in some cases. For example,
if object_fit is fill, so that the image is supposed to fill the container without preserving the aspect ratio, then
object_position will have no effect because there is effectively no positioning to do.

Another way to think about it is this: object_position specifies how the white space around an image should be
distributed in a container if there is white space in a particular direction.

Specifying object_position with keywords

This form of object_position takes two keywords, one for horizontal position of the image in the container and
one for the vertical position, in that order.

• The horizontal position must be one of:

– 'left': the left side of the image should be aligned with the left side of the container

– 'center': the image should be centered horizontally in the container.

– 'right': the right side of the image should be aligned with the rigth side of the container.

• The vertical position must be one of

– 'top': the top of the image should be aligned with the top of the container.

– ‘center’: the image should be centered vertically in the container.

– 'bottom': the bottom of the image should be aligned with the bottom of the container.

58 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

The effect of each is display below, once for an image smaller than the container and once for an image larger than the
container.

In the examples below the object_fit is set to 'none' so that the image is not scaled.

[28]: object_fit = 'none'
image_value = [im_600_300, im_50_25]
horz_keywords = ['left', 'center', 'right']
vert_keywords = ['top', 'center', 'bottom']

rows = []
for image, caption in zip(image_value, ['600 x 300 image', '50 x 25 image']):

cols = []
for horz in horz_keywords:

for vert in vert_keywords:
ib = Image(value=image)
ib.layout.object_position = '{horz} {vert}'.format(horz=horz, vert=vert)
ib.layout.margin = image_margin
ib.layout.object_fit = object_fit
ib.layout.height = 'inherit'
ib.layout.width = '100%'
cols.append(make_box_for_grid(ib, ib.layout.object_position))

hb = HBox()
hb.layout = hbox_layout
hb.children = cols
rows.append(hb)

vb = VBox()

h1 = HTML(value='<{size}><code> object_position </code> by '
'keyword with large image</{size}>'.format(size=caption_size))

h2 = HTML(value='<{size}><code> object_position </code> by '
'keyword with small image</{size}>'.format(size=caption_size))

vb.children = [h1, rows[0], h2, rows[1]]
vb.layout.height = '400px'
vb.layout.justify_content = 'space-around'
vb.layout.align_items = 'center'
vb

VBox(children=(HTML(value='<h4><code> object_position </code> by keyword with large
→˓image</h4>'), HBox(childre...

Specifying object_position with offsets in pixels

One can specify the offset of the top, left corner of the image from the top, left corner of the container in pixels. The
first of the two offsets is horizontal, the second is vertical and either may be negative. Using a large enough offset that
the image is outside the container will result in the image being hidden.

The image is scaled first using the value of object_fit (which defaults to fill if nothing is specified) then the
offset is applied.

Offsets can be specified from the bottom and/or right side by combining keywords and pixel offsets. For example,
right 10px bottom 20px offsets the right side of the image 10px from the right edge of the container and the
image bottom 20px from the bottom of the container.

1.1. User Guide 59

ipywidgets Documentation, Release 7.6.2

[29]: object_fit = ['none', 'contain', 'fill', 'cover']
offset = '20px 10px'
image_value = [im_600_300]

boxes = []
for image, caption in zip(image_value, ['600 x 300 image',]):

for fit in object_fit:
ib = Image(value=image)
ib.layout.object_position = offset
ib.layout.margin = image_margin
ib.layout.object_fit = fit
ib.layout.height = 'inherit'
ib.layout.width = '100%'
title = 'object_fit: {}'.format(ib.layout.object_fit)
boxes.append(make_box_for_grid(ib, title))

vb = VBox()
h = HTML(value='<{size}><code>object_position</code> by '

'offset {offset} with several '
'<code>object_fit</code>s with large image</{size}>'.

→˓format(size=caption_size,
offset=offset))

vb.layout.align_items = 'center'
hb = HBox()
hb.layout = hbox_layout
hb.children = boxes

vb.children = [h, hb]
vb

VBox(children=(HTML(value='<h4><code>object_position</code> by offset 20px 10px with
→˓several <code>object_fit<...

Specifying object_position with offsets as a percentage

One can specify the offset of the top, left corner of the image from the top, left corner of the container as a percent.The
first of the two offsets is horizontal, the second is vertical and either may be negative. Using a large enough offset that
the image is outside the container will result in the image being hidden.

The important thing to understand is that this is a percent of the white space in each direction if the image is smaller
than the container, so that 50% 50% centers the image.

If the image is larger than the container after scaling using the object_fit, then the offset is a percentage of the
overflow of the image outside the container. That means that 50% 50% also centers an image larger than the container.
A value of 10% 90% would put 10% of the out-of-container part of the image left of the left edge and 90% of the
out-of-container part vertically above the top edge.

As with specifying the object_position by keywords, the object_fit can prevent any offset from being
applied to the image.

60 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

1.1.8 Using Layout Templates

As we showed in Layout and Styling of Jupyter widgets multiple widgets can be aranged together using the flexible
GridBox specification. However, use of the specification involves some understanding of CSS properties and may
impose sharp learning curve. Here, we will describe layout templates built on top of GridBox that simplify creation
of common widget layouts.

[1]: # Utils widgets
from ipywidgets import Button, Layout, jslink, IntText, IntSlider

def create_expanded_button(description, button_style):
return Button(description=description, button_style=button_style,

→˓layout=Layout(height='auto', width='auto'))

top_left_button = create_expanded_button("Top left", 'info')
top_right_button = create_expanded_button("Top right", 'success')
bottom_left_button = create_expanded_button("Bottom left", 'danger')
bottom_right_button = create_expanded_button("Bottom right", 'warning')

top_left_text = IntText(description='Top left', layout=Layout(width='auto', height=
→˓'auto'))
top_right_text = IntText(description='Top right', layout=Layout(width='auto', height=
→˓'auto'))
bottom_left_slider = IntSlider(description='Bottom left', layout=Layout(width='auto',
→˓height='auto'))
bottom_right_slider = IntSlider(description='Bottom right', layout=Layout(width='auto
→˓', height='auto'))

2x2 Grid

You can easily create a layout with 4 widgets aranged on 2x2 matrix using the TwoByTwoLayout widget:

[2]: from ipywidgets import TwoByTwoLayout

TwoByTwoLayout(top_left=top_left_button,
top_right=top_right_button,
bottom_left=bottom_left_button,
bottom_right=bottom_right_button)

TwoByTwoLayout(children=(Button(button_style='info', description='Top left',
→˓layout=Layout(grid_area='top-left...

If you don’t define a widget for some of the slots, the layout will automatically re-configure itself by merging neigh-
bouring cells

[3]: TwoByTwoLayout(top_left=top_left_button,
bottom_left=bottom_left_button,
bottom_right=bottom_right_button)

TwoByTwoLayout(children=(Button(button_style='info', description='Top left',
→˓layout=Layout(grid_area='top-left...

You can pass merge=False in the argument of the TwoByTwoLayout constructor if you don’t want this behavior

[4]: TwoByTwoLayout(top_left=top_left_button,
bottom_left=bottom_left_button,

(continues on next page)

1.1. User Guide 61

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

bottom_right=bottom_right_button,
merge=False)

TwoByTwoLayout(children=(Button(button_style='info', description='Top left',
→˓layout=Layout(grid_area='top-left...

You can add a missing widget even after the layout initialization:

[5]: layout_2x2 = TwoByTwoLayout(top_left=top_left_button,
bottom_left=bottom_left_button,
bottom_right=bottom_right_button)

layout_2x2

TwoByTwoLayout(children=(Button(button_style='info', description='Top left',
→˓layout=Layout(grid_area='top-left...

[6]: layout_2x2.top_right = top_right_button

You can also use the linking feature of widgets to update some property of a widget based on another widget:

[7]: app = TwoByTwoLayout(top_left=top_left_text, top_right=top_right_text,
bottom_left=bottom_left_slider, bottom_right=bottom_right_slider)

link_left = jslink((app.top_left, 'value'), (app.bottom_left, 'value'))
link_right = jslink((app.top_right, 'value'), (app.bottom_right, 'value'))
app.bottom_right.value = 30
app.top_left.value = 25
app

TwoByTwoLayout(children=(IntText(value=25, description='Top left', layout=Layout(grid_
→˓area='top-left', height=...

You can easily create more complex layouts with custom widgets. For example, you can use bqplot Figure widget to
add plots:

[8]: import bqplot as bq
import numpy as np

[9]: size = 100
np.random.seed(0)

x_data = range(size)
y_data = np.random.randn(size)
y_data_2 = np.random.randn(size)
y_data_3 = np.cumsum(np.random.randn(size) * 100.)

x_ord = bq.OrdinalScale()
y_sc = bq.LinearScale()

bar = bq.Bars(x=np.arange(10), y=np.random.rand(10), scales={'x': x_ord, 'y': y_sc})
ax_x = bq.Axis(scale=x_ord)
ax_y = bq.Axis(scale=y_sc, tick_format='0.2f', orientation='vertical')

fig = bq.Figure(marks=[bar], axes=[ax_x, ax_y], padding_x=0.025, padding_y=0.025,
layout=Layout(width='auto', height='90%'))

62 Chapter 1. Full Table of Contents

http://github.com/bloomberg/bqplot

ipywidgets Documentation, Release 7.6.2

[10]: from ipywidgets import FloatSlider

max_slider = FloatSlider(min=0, max=10, default_value=2, description="Max: ",
layout=Layout(width='auto', height='auto'))

min_slider = FloatSlider(min=-1, max=10, description="Min: ",
layout=Layout(width='auto', height='auto'))

app = TwoByTwoLayout(top_left=min_slider,
bottom_left=max_slider,
bottom_right=fig,
align_items="center",
height='700px')

jslink((y_sc, 'max'), (max_slider, 'value'))
jslink((y_sc, 'min'), (min_slider, 'value'))
jslink((min_slider, 'max'), (max_slider, 'value'))
jslink((max_slider, 'min'), (min_slider, 'value'))

max_slider.value = 1.5
app

TwoByTwoLayout(children=(FloatSlider(value=0.0, description='Min: ',
→˓layout=Layout(grid_area='top-left', heigh...

AppLayout

AppLayout is a widget layout template that allows you to create an application-like widget arrangements. It consist
of a header, a footer, two sidebars and a central pane:

[11]: from ipywidgets import AppLayout, Button, Layout

[12]: header_button = create_expanded_button('Header', 'success')
left_button = create_expanded_button('Left', 'info')
center_button = create_expanded_button('Center', 'warning')
right_button = create_expanded_button('Right', 'info')
footer_button = create_expanded_button('Footer', 'success')

[13]: AppLayout(header=header_button,
left_sidebar=left_button,
center=center_button,
right_sidebar=right_button,
footer=footer_button)

AppLayout(children=(Button(button_style='success', description='Header',
→˓layout=Layout(grid_area='header', hei...

However with the automatic merging feature, it’s possible to achieve many other layouts:

[14]: AppLayout(header=None,
left_sidebar=None,
center=center_button,
right_sidebar=None,
footer=None)

AppLayout(children=(Button(button_style='warning', description='Center',
→˓layout=Layout(grid_area='center', hei...

1.1. User Guide 63

ipywidgets Documentation, Release 7.6.2

[15]: AppLayout(header=header_button,
left_sidebar=left_button,
center=center_button,
right_sidebar=right_button,
footer=None)

AppLayout(children=(Button(button_style='success', description='Header',
→˓layout=Layout(grid_area='header', hei...

[16]: AppLayout(header=None,
left_sidebar=left_button,
center=center_button,
right_sidebar=right_button,
footer=None)

AppLayout(children=(Button(button_style='info', description='Left',
→˓layout=Layout(grid_area='left-sidebar', he...

[17]: AppLayout(header=header_button,
left_sidebar=left_button,
center=center_button,
right_sidebar=None,
footer=footer_button)

AppLayout(children=(Button(button_style='success', description='Header',
→˓layout=Layout(grid_area='header', hei...

[18]: AppLayout(header=header_button,
left_sidebar=None,
center=center_button,
right_sidebar=right_button,
footer=footer_button)

AppLayout(children=(Button(button_style='success', description='Header',
→˓layout=Layout(grid_area='header', hei...

[19]: AppLayout(header=header_button,
left_sidebar=None,
center=center_button,
right_sidebar=None,
footer=footer_button)

AppLayout(children=(Button(button_style='success', description='Header',
→˓layout=Layout(grid_area='header', hei...

[20]: AppLayout(header=header_button,
left_sidebar=left_button,
center=None,
right_sidebar=right_button,
footer=footer_button)

AppLayout(children=(Button(button_style='success', description='Header',
→˓layout=Layout(grid_area='header', hei...

You can also modify the relative and absolute widths and heights of the panes using pane_widths and
pane_heights arguments. Both accept a sequence of three elements, each of which is either an integer (equiv-
alent to the weight given to the row/column) or a string in the format '1fr' (same as integer) or '100px' (absolute
size).

64 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

[21]: AppLayout(header=header_button,
left_sidebar=left_button,
center=center_button,
right_sidebar=right_button,
footer=footer_button,
pane_widths=[3, 3, 1],
pane_heights=[1, 5, '60px'])

AppLayout(children=(Button(button_style='success', description='Header',
→˓layout=Layout(grid_area='header', hei...

Grid layout

GridspecLayout is a N-by-M grid layout allowing for flexible layout definitions using an API similar to mat-
plotlib’s GridSpec.

You can use GridspecLayout to define a simple regularly-spaced grid. For example, to create a 4x3 layout:

[22]: from ipywidgets import GridspecLayout

grid = GridspecLayout(4, 3)

for i in range(4):
for j in range(3):

grid[i, j] = create_expanded_button('Button {} - {}'.format(i, j), 'warning')
grid

GridspecLayout(children=(Button(button_style='warning', description='Button 0 - 0',
→˓layout=Layout(grid_area='w...

To make a widget span several columns and/or rows, you can use slice notation:

[23]: grid = GridspecLayout(4, 3, height='300px')
grid[:3, 1:] = create_expanded_button('One', 'success')
grid[:, 0] = create_expanded_button('Two', 'info')
grid[3, 1] = create_expanded_button('Three', 'warning')
grid[3, 2] = create_expanded_button('Four', 'danger')
grid

GridspecLayout(children=(Button(button_style='success', description='One',
→˓layout=Layout(grid_area='widget001'...

You can still change properties of the widgets stored in the grid, using the same indexing notation.

[24]: grid = GridspecLayout(4, 3, height='300px')
grid[:3, 1:] = create_expanded_button('One', 'success')
grid[:, 0] = create_expanded_button('Two', 'info')
grid[3, 1] = create_expanded_button('Three', 'warning')
grid[3, 2] = create_expanded_button('Four', 'danger')

grid

GridspecLayout(children=(Button(button_style='success', description='One',
→˓layout=Layout(grid_area='widget001'...

[25]: grid[0, 0].description = "I am the blue one"

1.1. User Guide 65

https://matplotlib.org/tutorials/intermediate/gridspec.html#sphx-glr-tutorials-intermediate-gridspec-py

ipywidgets Documentation, Release 7.6.2

Note: It’s enough to pass an index of one of the grid cells occupied by the widget of interest. Slices are not supported
in this context.

If there is already a widget that conflicts with the position of the widget being added, it will be removed from the grid:

[26]: grid = GridspecLayout(4, 3, height='300px')
grid[:3, 1:] = create_expanded_button('One', 'info')
grid[:, 0] = create_expanded_button('Two', 'info')
grid[3, 1] = create_expanded_button('Three', 'info')
grid[3, 2] = create_expanded_button('Four', 'info')

grid

GridspecLayout(children=(Button(button_style='info', description='One',
→˓layout=Layout(grid_area='widget001', h...

[27]: grid[3, 1] = create_expanded_button('New button!!', 'danger')

Note: Slices are supported in this context.

[28]: grid[:3, 1:] = create_expanded_button('I am new too!!!!!', 'warning')

Creating scatter plots using GridspecLayout

In this examples, we will demonstrate how to use GridspecLayout and bqplot widget to create a multipanel
scatter plot. To run this example you will need to install the bqplot package.

For example, you can use the following snippet to obtain a scatter plot across multiple dimensions:

[29]: import bqplot as bq
import numpy as np
from ipywidgets import GridspecLayout, Button, Layout

n_features = 5
data = np.random.randn(100, n_features)
data[:50, 2] += 4 * data[:50, 0] **2
data[50:, :] += 4

A = np.random.randn(n_features, n_features)/5

data = np.dot(data,A)

scales_x = [bq.LinearScale() for i in range(n_features)]
scales_y = [bq.LinearScale() for i in range(n_features)]

gs = GridspecLayout(n_features, n_features)
for i in range(n_features):

for j in range(n_features):

if i != j:
sc_x = scales_x[j]
sc_y = scales_y[i]

scatt = bq.Scatter(x=data[:, j], y=data[:, i], scales={'x': sc_x, 'y': sc_
→˓y}, default_size=1)

gs[i, j] = bq.Figure(marks=[scatt], layout=Layout(width='auto', height=
→˓'auto'),

(continues on next page)

66 Chapter 1. Full Table of Contents

https://bqplot.readthedocs.io/en/latest/

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

fig_margin=dict(top=0, bottom=0, left=0, right=0))
else:

sc_x = scales_x[j]
sc_y = bq.LinearScale()

hist = bq.Hist(sample=data[:,i], scales={'sample': sc_x, 'count': sc_y})

gs[i, j] = bq.Figure(marks=[hist], layout=Layout(width='auto', height=
→˓'auto'),

fig_margin=dict(top=0, bottom=0, left=0, right=0))
gs

GridspecLayout(children=(Figure(fig_margin={'top': 0, 'bottom': 0, 'left': 0, 'right':
→˓ 0}, layout=Layout(grid_...

Style attributes

You can specify extra style properties to modify the layout. For example, you can change the size of the whole layout
using the height and width arguments.

[30]: AppLayout(header=None,
left_sidebar=left_button,
center=center_button,
right_sidebar=right_button,
footer=None,
height="200px", width="50%")

AppLayout(children=(Button(button_style='info', description='Left',
→˓layout=Layout(grid_area='left-sidebar', he...

The gap between the panes can be increase or decreased with grid_gap argument:

[31]: AppLayout(header=None,
left_sidebar=left_button,
center=center_button,
right_sidebar=right_button,
footer=None,
height="200px", width="50%",
grid_gap="10px")

AppLayout(children=(Button(button_style='info', description='Left',
→˓layout=Layout(grid_area='left-sidebar', he...

Additionally, you can control the alignment of widgets within the layout using justify_content and
align_items attributes:

[32]: from ipywidgets import Text, HTML
TwoByTwoLayout(top_left=top_left_button, top_right=top_right_button,

bottom_right=bottom_right_button,
justify_items='center',
width="50%",
align_items='center')

TwoByTwoLayout(children=(Button(button_style='info', description='Top left',
→˓layout=Layout(grid_area='top-left...

For other alignment options it’s possible to use common names (top and bottom) or their CSS equivalents
(flex-start and flex-end):

1.1. User Guide 67

ipywidgets Documentation, Release 7.6.2

[33]: TwoByTwoLayout(top_left=top_left_button, top_right=top_right_button,
bottom_right=bottom_right_button,
justify_items='center',
width="50%",
align_items='top')

TwoByTwoLayout(children=(Button(button_style='info', description='Top left',
→˓layout=Layout(grid_area='top-left...

Example

In this notebook you will find a full example using AppLayout.

[1]: from __future__ import print_function

68 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

1.1.9 Building a Custom Widget - Email widget

The widget framework is built on top of the Comm framework (short for communication). The Comm framework is a
framework that allows the kernel to send/receive JSON messages to/from the front end (as seen below).

To create a custom widget, you need to define the widget both in the browser and in the python kernel.

Building a Custom Widget

To get started, you’ll create a simple email widget.

Python Kernel

DOMWidget and Widget

To define a widget, you must inherit from the Widget or DOMWidget base class. If you intend for your widget to be
displayed in the Jupyter notebook, you’ll want to inherit from the DOMWidget. The DOMWidget class itself inherits
from the Widget class. The Widget class is useful for cases in which the Widget is not meant to be displayed directly in
the notebook, but instead as a child of another rendering environment. For example, if you wanted to create a three.js
widget (a popular WebGL library), you would implement the rendering window as a DOMWidget and any 3D objects
or lights meant to be rendered in that window as Widgets.

1.1. User Guide 69

ipywidgets Documentation, Release 7.6.2

_view_name

Inheriting from the DOMWidget does not tell the widget framework what front end widget to associate with your back
end widget.

Instead, you must tell it yourself by defining specially named trait attributes, _view_name, _view_module, and
_view_module_version (as seen below) and optionally _model_name and _model_module.

[2]: from traitlets import Unicode, Bool, validate, TraitError
from ipywidgets import DOMWidget, register

@register
class Email(DOMWidget):

_view_name = Unicode('EmailView').tag(sync=True)
_view_module = Unicode('email_widget').tag(sync=True)
_view_module_version = Unicode('0.1.0').tag(sync=True)

sync=True traitlets

Traitlets is an IPython library for defining type-safe properties on configurable objects. For this tutorial you do not
need to worry about the configurable piece of the traitlets machinery. The sync=True keyword argument tells the
widget framework to handle synchronizing that value to the browser. Without sync=True, attributes of the widget
won’t be synchronized with the front-end.

Other traitlet types

Unicode, used for _view_name, is not the only Traitlet type, there are many more some of which are listed below:

• Any

• Bool

• Bytes

• CBool

• CBytes

• CComplex

• CFloat

• CInt

• CLong

• CRegExp

• CUnicode

• CaselessStrEnum

• Complex

• Dict

• DottedObjectName

• Enum

70 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

• Float

• FunctionType

• Instance

• InstanceType

• Int

• List

• Long

• Set

• TCPAddress

• Tuple

• Type

• Unicode

• Union

Not all of these traitlets can be synchronized across the network, only the JSON-able traits and Widget instances will
be synchronized.

Front end (JavaScript)

Models and views

The IPython widget framework front end relies heavily on Backbone.js. Backbone.js is an MVC (model view con-
troller) framework. Widgets defined in the back end are automatically synchronized with generic Backbone.js models
in the front end. The traitlets are added to the front end instance automatically on first state push. The _view_name
trait that you defined earlier is used by the widget framework to create the corresponding Backbone.js view and link
that view to the model.

Import @jupyter-widgets/base

You first need to import the @jupyter-widgets/base module. To import modules, use the define method of
require.js (as seen below).

[3]: %%javascript
define('email_widget', ["@jupyter-widgets/base"], function(widgets) {

});

<IPython.core.display.Javascript object>

1.1. User Guide 71

http://backbonejs.org/
http://requirejs.org/

ipywidgets Documentation, Release 7.6.2

Define the view

Next, define your widget view class. Inherit from the DOMWidgetView by using the .extend method.

[4]: %%javascript
require.undef('email_widget');

define('email_widget', ["@jupyter-widgets/base"], function(widgets) {

// Define the EmailView
var EmailView = widgets.DOMWidgetView.extend({

});

return {
EmailView: EmailView

}
});

<IPython.core.display.Javascript object>

Render method

Lastly, override the base render method of the view to define custom rendering logic. A handle to the widget’s
default DOM element can be acquired via this.el. The el property is the DOM element associated with the view.

[5]: %%javascript
require.undef('email_widget');

define('email_widget', ["@jupyter-widgets/base"], function(widgets) {

var EmailView = widgets.DOMWidgetView.extend({

// Render the view.
render: function() {

this.email_input = document.createElement('input');
this.email_input.type = 'email';
this.email_input.value = 'example@example.com';
this.email_input.disabled = true;

this.el.appendChild(this.email_input);
},

});

return {
EmailView: EmailView

};
});

<IPython.core.display.Javascript object>

72 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

Test

You should be able to display your widget just like any other widget now.

[6]: Email()

Email()

Making the widget stateful

There is not much that you can do with the above example that you can’t do with the IPython display framework. To
change this, you will make the widget stateful. Instead of displaying a static “example@example.com” email address,
it will display an address set by the back end. First you need to add a traitlet in the back end. Use the name of value
to stay consistent with the rest of the widget framework and to allow your widget to be used with interact.

We want to be able to avoid user to write an invalid email address, so we need a validator using traitlets.

[7]: from traitlets import Unicode, Bool, validate, TraitError
from ipywidgets import DOMWidget, register

@register
class Email(DOMWidget):

_view_name = Unicode('EmailView').tag(sync=True)
_view_module = Unicode('email_widget').tag(sync=True)
_view_module_version = Unicode('0.1.0').tag(sync=True)

Attributes
value = Unicode('example@example.com', help="The email value.").tag(sync=True)
disabled = Bool(False, help="Enable or disable user changes.").tag(sync=True)

Basic validator for the email value
@validate('value')
def _valid_value(self, proposal):

if proposal['value'].count("@") != 1:
raise TraitError('Invalid email value: it must contain an "@" character')

if proposal['value'].count(".") == 0:
raise TraitError('Invalid email value: it must contain at least one "."

→˓character')
return proposal['value']

Accessing the model from the view

To access the model associated with a view instance, use the model property of the view. get and set methods
are used to interact with the Backbone model. get is trivial, however you have to be careful when using set. After
calling the model set you need call the view’s touch method. This associates the set operation with a particular
view so output will be routed to the correct cell. The model also has an on method, which allows you to listen to
events triggered by the model (like value changes).

1.1. User Guide 73

mailto:example@example.com

ipywidgets Documentation, Release 7.6.2

Rendering model contents

By replacing the string literal with a call to model.get, the view will now display the value of the back end upon
display. However, it will not update itself to a new value when the value changes.

[8]: %%javascript
require.undef('email_widget');

define('email_widget', ["@jupyter-widgets/base"], function(widgets) {

var EmailView = widgets.DOMWidgetView.extend({

// Render the view.
render: function() {

this.email_input = document.createElement('input');
this.email_input.type = 'email';
this.email_input.value = this.model.get('value');
this.email_input.disabled = this.model.get('disabled');

this.el.appendChild(this.email_input);
},

});

return {
EmailView: EmailView

};
});

<IPython.core.display.Javascript object>

[9]: Email(value='john.doe@domain.com', disabled=True)

Email(disabled=True, value='john.doe@domain.com')

Dynamic updates

To get the view to update itself dynamically, register a function to update the view’s value when the model’s value
property changes. This can be done using the model.on method. The on method takes three parameters, an event
name, callback handle, and callback context. The Backbone event named change will fire whenever the model
changes. By appending :value to it, you tell Backbone to only listen to the change event of the value property (as
seen below).

[10]: %%javascript
require.undef('email_widget');

define('email_widget', ["@jupyter-widgets/base"], function(widgets) {

var EmailView = widgets.DOMWidgetView.extend({

// Render the view.
render: function() {

this.email_input = document.createElement('input');
this.email_input.type = 'email';
this.email_input.value = this.model.get('value');
this.email_input.disabled = this.model.get('disabled');

(continues on next page)

74 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

this.el.appendChild(this.email_input);

// Python -> JavaScript update
this.model.on('change:value', this.value_changed, this);
this.model.on('change:disabled', this.disabled_changed, this);

},

value_changed: function() {
this.email_input.value = this.model.get('value');

},

disabled_changed: function() {
this.email_input.disabled = this.model.get('disabled');

},
});

return {
EmailView: EmailView

};
});

<IPython.core.display.Javascript object>

This allows us to update the value from the Python kernel to the views. Now to get the value updated from the front-end
to the Python kernel (when the input is not disabled) we can do it using the model.set method.

[11]: %%javascript
require.undef('email_widget');

define('email_widget', ["@jupyter-widgets/base"], function(widgets) {

var EmailView = widgets.DOMWidgetView.extend({

// Render the view.
render: function() {

this.email_input = document.createElement('input');
this.email_input.type = 'email';
this.email_input.value = this.model.get('value');
this.email_input.disabled = this.model.get('disabled');

this.el.appendChild(this.email_input);

// Python -> JavaScript update
this.model.on('change:value', this.value_changed, this);
this.model.on('change:disabled', this.disabled_changed, this);

// JavaScript -> Python update
this.email_input.onchange = this.input_changed.bind(this);

},

value_changed: function() {
this.email_input.value = this.model.get('value');

},

disabled_changed: function() {
this.email_input.disabled = this.model.get('disabled');

},

(continues on next page)

1.1. User Guide 75

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

input_changed: function() {
this.model.set('value', this.email_input.value);
this.model.save_changes();

},
});

return {
EmailView: EmailView

};
});

<IPython.core.display.Javascript object>

Test

[12]: email = Email(value='john.doe@domain.com', disabled=False)
email

Email(value='john.doe@domain.com')

[13]: email.value

[13]: 'john.doe@domain.com'

[14]: email.value = 'jane.doe@domain.com'

More advanced uses: Packaging and distributing Jupyter widgets

A template project is available in the form of a cookie cutter: https://github.com/jupyter/widget-cookiecutter

This project is meant to help custom widget authors get started with the packaging and the distribution of Jupyter
interactive widgets.

It produces a project for a Jupyter interactive widget library following the current best practices for using interactive
widgets. An implementation for a placeholder “Hello World” widget is provided.

1.1.10 Low Level Widget Tutorial

How do they fit into the picture?

One of the goals of the Jupyter Notebook is to minimize the “distance” the user is from their data. This means allowing
the user to quickly view and manipulate the data.

76 Chapter 1. Full Table of Contents

https://github.com/jupyter/widget-cookiecutter

ipywidgets Documentation, Release 7.6.2

Before the widgets, this was just the segmen-
tation of code and results from executing those
segments.

Widgets further decrease the distance between the user and their
data by allowing UI interactions to directly manipulate data in
the kernel.

How?

Jupyter interactive widgets are interactive elements, think sliders, textboxes, buttons, that have representations both in
the kernel (place where code is executed) and the front-end (the Notebook web interface). To do this, a clean, well
abstracted communication layer must exist.

Comms

This is where Jupyter notebook “comms” come into play. The comm API is a symmetric, asynchronous, fire and forget
style messaging API. It allows the programmer to send JSON-able blobs between the front-end and the back-end. The
comm API hides the complexity of the webserver, ZMQ, and websockets.

Synchronized state

Using comms, the widget base layer is designed to keep state in sync. In the kernel, a Widget instance exists. This
Widget instance has a corresponding WidgetModel instance in the front-end. The Widget and WidgetModel store
the same state. The widget framework ensures both models are kept in sync with eachother. If the WidgetModel is
changed in the front-end, the Widget receives the same change in the kernel. Vise versa, if the Widget in the kernel is
changed, the WidgetModel in the front-end receives the same change. There is no single source of truth, both models
have the same precedence. Although a notebook has the notion of cells, neither Widget or WidgetModel are bound to
any single cell.

1.1. User Guide 77

ipywidgets Documentation, Release 7.6.2

Models and Views

In order for the user to interact with widgets on a cell by cell basis, the WidgetModels are represented by WidgetViews.
Any single WidgetView is bound to a single cell. Multiple WidgetViews can be linked to a single WidgetModel. This
is how you can redisplay the same Widget multiple times and it still works. To accomplish this, the widget framework
uses Backbone.js. In a traditional MVC framework, the WidgetModel is the (M)odel, and the WidgetView is both the
(V)iew and (C)ontroller. Meaning that, the views both display the state of the model and manipulate it. Think about a
slider control, it both displays the value and allows the user to change the value by dragging the slide handle.

[1]: from ipywidgets import *
from IPython.display import display
w = IntSlider()
display(w, w)

IntSlider(value=0)

IntSlider(value=0)

[2]: display(w)

IntSlider(value=0)

Code execution

The user code required to display a simple FloatSlider widget is:

from ipywidgets import FloatSlider
from IPython.display import display
slider = FloatSlider()
display(slider)

In order to understand how a widget is displayed, one must understand how code is executed in the Notebook. Ex-
ecution begins in the code cell. A user event triggers the code cell to send an evaluate code message to the kernel,
containing all of the code in the code cell. This message is given a GUID, which the front-end associates to the code
cell, and remembers it (important).

Once that message is received by the kernel, the kernel immediately sends the front-end an “I’m busy” status message.
The kernel then proceeds to execute the code.

Model construction

When a Widget is constructed in the kernel, the first thing that happens is that a comm is constructed and associated
with the widget. When the comm is constructed, it is given a GUID (globally unique identifier). A comm-open
message is sent to the front-end, with metadata stating that the comm is a widget comm and what the corresponding
WidgetModel class is.

The WidgetModel class is specified by module and name. Require.js is then used to asynchronously load the Widget-
Model class. The message triggers a comm to be created in the front-end with same GUID as the back-end. Then, the
new comm gets passed into the WidgetManager in the front-end, which creates an instance of the WidgetModel class,
linked to the comm. Both the Widget and WidgetModel repurpose the comm GUID as their own.

78 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

Asynchronously, the kernel sends an initial state push, containing all of the initial state of the Widget, to the front-
end, immediately after the comm-open message. This state message may or may not be received by the time the
WidgetModel is constructed. Regardless, the message is cached and gets processed once the WidgetModel has been
constructed. The initial state push is what causes the WidgetModel in the front-end to become in sync with the Widget
in the kernel.

Displaying a view

After the Widget has been constructed, it can be displayed. Calling display(widgetinstance) causes a spe-
cially named repr method in the widget to run. This method sends a message to the front-end that tells the front-end
to construct and display a widget view. The message is in response to the original code execution message, and the
original message’s GUID is stored in the new message’s header. When the front-end receives the message, it uses the
original message’s GUID to determine what cell the new view should belong to. Then, the view is created, using the
WidgetView class specified in the WidgetModel’s state. The same require.js method is used to load the view class.
Once the class is loaded, an instance of it is constructed, displayed in the right cell, and registers listeners for changes
of the model.

Widget skeleton

[3]: %%javascript
this.model.get('count');
this.model.set('count', 999);
this.touch();

/////////////////////////////////

this.colorpicker = document.createElement('input');
this.colorpicker.setAttribute('type', 'color');
this.el.appendChild(this.colorpicker);

<IPython.core.display.Javascript object>

Since widgets exist in both the front-end and kernel, they consist of both Python (if the kernel is IPython) and Javascript
code. A boilerplate widget can be seen below:

Python:

from ipywidgets import DOMWidget
from traitlets import Unicode, Int

class MyWidget(DOMWidget):
_view_module = Unicode('mywidget').tag(sync=True)
_view_module_version = Unicode('0.1.0').tag(sync=True)
_view_name = Unicode('MyWidgetView').tag(sync=True)
count = Int().tag(sync=True)

JavaScript:

define('mywidget', ['@jupyter-widgets/base'], function(widgets) {
var MyWidgetView = widgets.DOMWidgetView.extend({

(continues on next page)

1.1. User Guide 79

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

render: function() {
MyWidgetView.__super__.render.apply(this, arguments);
this._count_changed();
this.listenTo(this.model, 'change:count', this._count_changed, this);

},

_count_changed: function() {
var old_value = this.model.previous('count');
var new_value = this.model.get('count');
this.el.textContent = String(old_value) + ' -> ' + String(new_value);

}
});

return {
MyWidgetView: MyWidgetView

}
});

Describing the Python:

The base widget classes are DOMWidget and Widget. The DOMWidget class represents a widget that is represented
in the page as an HTML DOM element. The Widget class is more general and can be used for objects that may not
live on the page as a DOM element (for example, a widget inheriting from Widget may represent a Javascript object).

_view_module, _view_module_version, and _view_name are how the front-end knows what view class to
construct for the model.

sync=True is what makes the traitlets behave like state.

A similarly named _model_module, _model_module_version, and _model_name can be used to specify
the corresponding WidgetModel.

count is an example of a custom piece of state.

Describing the JavaScript:

The define call asynchronously loads the specified dependencies, and then passes them in as arguments into the
callback. Here, the only dependency that is loaded is the base widget module.

Custom views inherit from either DOMWidgetView or WidgetView. The DOMWidgetView class is for widgets
that render themselves into a DOM element, and the WidgetView class does not make this assumption.

Custom models inherit from WidgetModel.

The render method is what is called to render the view’s contents. If the view is a DOMWidgetView, the .el
attribute contains the DOM element that will be displayed on the page.

.listenTo allows the view to listen to properties of the model for changes.

_count_changed is an example of a method that could be used to handle model changes.

this.model is how the corresponding model can be accessed.

this.model.previous will get the previous value of the trait.

this.model.get will get the current value of the trait.

this.model.set followed by this.model.save_changes(); changes the model.
Use the view method touch instead of model.save_changes to associate the changes with the current view,
thus associating any response messages with the view’s cell.

80 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

The dictionary returned is the public members of the module.

Serialization of widget attributes

Widget trait attributes tagged with sync=True are synchronized with the JavaScript model instance on the JavaScript
side. For this reason, they need to be serialized into json.

By default, basic Python types such as int, float, list and dict are simply be mapped to Number, Array and
Object. For more complex types, serializers and de-serializers must be specified on both the Python side and the
JavaScript side.

Custom serialization and de-serialization on the Python side

In many cases, a custom serialization must be specified for trait attributes. For example

• if the trait attribute is not json serializable

• if the trait attribute contains data that is not needed by the JavaScript side.

Custom serialization can be specified for a given trait attribute through the to_json and from_json metadata.
These must be functions that take two arguments

• the value to be [de]serialized

• the instance of the underlying widget model.

In most cases, the second argument is not used in the implementation of the serializer.

Example

For example, in the case of the value attribute of the DatePicker widget, the declaration is

value = Datetime(None, allow_none=True).tag(sync=True, to_json=datetime_to_json, from_
→˓json=datetime_from_json)

where datetime_to_json(value, widget) and datetime_from_json(value, widget) return or
handle json data-structures that are amenable to the front-end.

The case of parent child relationships between widget models

When a widget model holds other widget models, you must use the serializers and deserializers provided in ipywidgets
packed into the widget_serialization dictionary.

For example, the HBox widget declares its children attribute in the following fashion:

from .widget import widget_serialization

[...]

children = Tuple().tag(sync=True, **widget_serialization)

The actual result of the serialization of a widget model is a string holding the widget id prefixed with "IPY_MODEL_".

1.1. User Guide 81

ipywidgets Documentation, Release 7.6.2

Custom serialization and de-serialization on the JavaScript side

In order to mirror the custom serializer and deserializer of the Python side, symmetric methods must be provided on
the JavaScript side.

On the JavaScript side, serializers are specified through the serializers class-level attribute of the widget model.

They are generally specified in the following fashion, extending the dictionary of serializers and serializers of the base
class. In the following example, which comes from the DatePicker, the deserializer for the value attribute is
specified.

static serializers = _.extend({
value: {

serialize: serialize_datetime,
deserialize: deserialize_datetime

}
}, BaseModel.serializers)

Custom serializers are functions taking two arguments: the value of the object to [de]serialize, and the widget manager.
In most cases, the widget manager is actually not used.

Installation

Because the API of any given widget must exist in the kernel, the kernel is the natural place for widgets to be installed.
However, kernels, as of now, don’t host static assets. Instead, static assets are hosted by the webserver, which is the
entity that sits between the kernel and the front-end. This is a problem, because it means widgets have components
that need to be installed both in the webserver and the kernel. The kernel components are easy to install, because
you can rely on the language’s built in tools. The static assets for the webserver complicate things, because an extra
step is required to let the webserver know where the assets are.

Static assets

In the case of the classic Jupyter notebook, static assets are made available to the Jupyter notebook in the form of a
Jupyter extensions. JavaScript bundles are copied in a directory accessible through the nbextensions/ handler.
Nbextensions also have a mechanism for running your code on page load. This can be set using the install-nbextension
command.

Distribution

A template project is available in the form of a cookie cutter: https://github.com/jupyter-widgets/widget-cookiecutter

This project is meant to help custom widget authors get started with the packaging and the distribution of Jupyter
interactive widgets.

It produces a project for a Jupyter interactive widget library following the current best practices for using interactive
widgets. An implementation for a placeholder “Hello World” widget is provided.

82 Chapter 1. Full Table of Contents

https://github.com/jupyter-widgets/widget-cookiecutter

ipywidgets Documentation, Release 7.6.2

1.1.11 Asynchronous Widgets

This notebook covers two scenarios where we’d like widget-related code to run without blocking the kernel from
acting on other execution requests:

1. Pausing code to wait for user interaction with a widget in the frontend

2. Updating a widget in the background

Waiting for user interaction

You may want to pause your Python code to wait for some user interaction with a widget from the frontend. Typically
this would be hard to do since running Python code blocks any widget messages from the frontend until the Python
code is done.

We’ll do this in two approaches: using the event loop integration, and using plain generator functions.

Event loop integration

If we take advantage of the event loop integration IPython offers, we can have a nice solution using the async/await
syntax in Python 3.

First we invoke our asyncio event loop. This requires ipykernel 4.7 or later.

[1]: %gui asyncio

We define a new function that returns a future for when a widget attribute changes.

[2]: import asyncio
def wait_for_change(widget, value):

future = asyncio.Future()
def getvalue(change):

make the new value available
future.set_result(change.new)
widget.unobserve(getvalue, value)

widget.observe(getvalue, value)
return future

And we finally get to our function where we will wait for widget changes. We’ll do 10 units of work, and pause after
each one until we observe a change in the widget. Notice that the widget’s value is available to us, since it is what the
wait_for_change future has as a result.

Run this function, and change the slider 10 times.

[3]: from ipywidgets import IntSlider
slider = IntSlider()

async def f():
for i in range(10):

print('did work %s'%i)
x = await wait_for_change(slider, 'value')
print('async function continued with value %s'%x)

asyncio.ensure_future(f())

slider

1.1. User Guide 83

ipywidgets Documentation, Release 7.6.2

IntSlider(value=0)

Generator approach

If you can’t take advantage of the async/await syntax, or you don’t want to modify the event loop, you can also do this
with generator functions.

First, we define a decorator which hooks a generator function up to widget change events.

[4]: from functools import wraps
def yield_for_change(widget, attribute):

"""Pause a generator to wait for a widget change event.

This is a decorator for a generator function which pauses the generator on yield
until the given widget attribute changes. The new value of the attribute is
sent to the generator and is the value of the yield.
"""
def f(iterator):

@wraps(iterator)
def inner():

i = iterator()
def next_i(change):

try:
i.send(change.new)

except StopIteration as e:
widget.unobserve(next_i, attribute)

widget.observe(next_i, attribute)
start the generator
next(i)

return inner
return f

did work 0

Then we set up our generator.

[5]: from ipywidgets import IntSlider, VBox, HTML
slider2=IntSlider()

@yield_for_change(slider2, 'value')
def f():

for i in range(10):
print('did work %s'%i)
x = yield
print('generator function continued with value %s'%x)

f()

slider2

did work 0

IntSlider(value=0)

84 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

Modifications

The above two approaches both waited on widget change events, but can be modified to wait for other things, such as
button event messages (as in a “Continue” button), etc.

Updating a widget in the background

Sometimes you’d like to update a widget in the background, allowing the kernel to also process other execute requests.
We can do this with threads. In the example below, the progress bar will update in the background and will allow the
main kernel to do other computations.

[6]: import threading
from IPython.display import display
import ipywidgets as widgets
import time
progress = widgets.FloatProgress(value=0.0, min=0.0, max=1.0)

def work(progress):
total = 100
for i in range(total):

time.sleep(0.2)
progress.value = float(i+1)/total

thread = threading.Thread(target=work, args=(progress,))
display(progress)
thread.start()

FloatProgress(value=0.0, max=1.0)

1.1.12 Embedding Jupyter Widgets in Other Contexts than the Notebook

Jupyter interactive widgets can be serialized and embedded into

• static web pages

• sphinx documentation

• html-converted notebooks on nbviewer

Here, we discuss embedding widgets using the custom widget manager in the @jupyter-widgets/
html-manager npm package. Two embedders are provided:

1. A basic embedder that only embeds standard controls, but can be used on any web page

2. An embedder that uses RequireJS, and can embed standard and custom widgets

Embedding Widgets in HTML Web Pages

The classic notebook interface provides a Widgets menu for generating an HTML snippet that can be embedded
into any static web page:

The menu provides three sets of actions

• Save Notebook Widget State and Clear Notebook Widget State

• Download Widget State

• Embed Widgets

1.1. User Guide 85

ipywidgets Documentation, Release 7.6.2

Save Notebook Widget State

A notebook file may be saved with the current widget state as metadata. This allows the notebook file to be rendered
with rendered widgets (see the section about Sphinx below, for example). To save a notebook with the current widget
state, use the Save Notebook Widget State menu item.

In order to delete old saved state and save new state to the notebook, do the following in order:

1. Use the Clear Notebook Widget State menu and save the notebook. This clears the metadata from
the notebook file.

2. Restart the kernel and refresh the page. This clears the old widget state from the widget manager on the page.

3. Create whatever widgets you’d like, and use Save Notebook Widget State and save the notebook. This
saves the new widget state to the notebook file.

Embeddable HTML Snippet

The Embed widgets menu item provides a dialog containing an HTML page which embeds the current widgets.
In order to support custom widgets, it uses the RequireJS embedder.

This HTML snippet is composed of multiple <script> tags embedded into an HTML document:

• The first script tag loads RequireJS from a CDN. If you already have RequireJS on the page, you can delete this
script tag.

• The second script tag loads the RequireJS widget embedder. This defines appropriate modules and then sets up a
function to render all of the widget views included on the page. If you are only embedding standard widgets and
do not want to use RequireJS, you can replace these first two script tags with a script tag loading the standard
embedder.

• The next script tag is a script tag with mime type application/vnd.jupyter.widget-state+json
that contains the state of all the widget models currently in use. The JSON schema for the content of this script
tag is found in the @jupyter-widgets/schema npm package.

• Then there are a number of script tags, each with mime type application/vnd.jupyter.
widget-view+json, corresponding to the views which you want to display in the web page. These script
tags must be in the body of the page, and are replaced with the rendered widgets. The JSON schema for the
content of these script tags is found in the @jupyter-widgets/schema npm package.

The Embed Widgets action currently creates one of these script tags for each view displayed in the notebook. If
you’d like to lay out the views, or include only some of them, you can delete or include these script tags as you
wish.

In order to clear widget state from the frontend so that it does not show up in the embedding, restart the kernel and
then refresh the page, in that order.

Widget State JSON

The Download Widget State option triggers the downloading of a JSON file containing the serialized state of
all the widget models currently in use, using the application/vnd.jupyter.widget-state+json format
specified in the @jupyter-widgets/schema npm package.

86 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

Python interface

Embeddable code for the widgets can also be produced from Python. The ipywidgets.embed module provides
several functions for embedding widgets into HTML documents programatically.

Use embed_minimal_html to create a simple, stand-alone HTML page:

from ipywidgets import IntSlider
from ipywidgets.embed import embed_minimal_html

slider = IntSlider(value=40)
embed_minimal_html('export.html', views=[slider], title='Widgets export')

This creates the stand-alone file export.html. To view the file, either start an HTTP server, such as the HTTP
server in the Python standard library, or just open it in your web browser (by double-clicking on the file, or by writing
file:///path/to/file in your browser search bar).

You will sometimes want greater granularity than that afforded by embed_minimal_html. Often, you want to
control the structure of the HTML document in which the widgets are embedded. For this, use embed_data to get
JSON exports of specific parts of the widget state. You can embed these in an HTML template:

import json

from ipywidgets import IntSlider
from ipywidgets.embed import embed_data

s1 = IntSlider(max=200, value=100)
s2 = IntSlider(value=40)
data = embed_data(views=[s1, s2])

html_template = """
<html>

<head>

<title>Widget export</title>

<!-- Load RequireJS, used by the IPywidgets for dependency management -->
<script

src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"
integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA="
crossorigin="anonymous">

</script>

<!-- Load IPywidgets bundle for embedding. -->
<script

data-jupyter-widgets-cdn="https://cdn.jsdelivr.net/npm/"
src="https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed-amd.js"
crossorigin="anonymous">

</script>

<!-- The state of all the widget models on the page -->
<script type="application/vnd.jupyter.widget-state+json">

{manager_state}
</script>

</head>

<body>

(continues on next page)

1.1. User Guide 87

https://docs.python.org/3.6/library/http.server.html#module-http.server
https://docs.python.org/3.6/library/http.server.html#module-http.server

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

<h1>Widget export</h1>

<div id="first-slider-widget">
<!-- This script tag will be replaced by the view's DOM tree -->
<script type="application/vnd.jupyter.widget-view+json">

{widget_views[0]}
</script>

</div>

<hrule />

<div id="second-slider-widget">
<!-- This script tag will be replaced by the view's DOM tree -->
<script type="application/vnd.jupyter.widget-view+json">

{widget_views[1]}
</script>

</div>

</body>
</html>
"""

manager_state = json.dumps(data['manager_state'])
widget_views = [json.dumps(view) for view in data['view_specs']]
rendered_template = html_template.format(manager_state=manager_state, widget_
→˓views=widget_views)
with open('export.html', 'w') as fp:

fp.write(rendered_template)

The web page needs to load RequireJS and the Jupyter widgets HTML manager. You then need to include the manager
state in a <script> tag of type application/vnd.jupyter.widget-state+json, which can go in the
head of the document. For each widget view, place a <script> tag of type application/vnd.jupyter.
widget-view+json in the DOM element that should contain the view. The widget manager will replace each
<script> tag with the DOM tree corresponding to the widget.

In this example, we used a Python string for the template, and used the format method to interpolate the state. For
embedding in more complex documents, you may want to use a templating engine like Jinja2.

We also change the CDN from its default of unpkg to use jsdelivr by setting the data-jupyter-widgets-cdn
attribute.

In all embedding functions in ipywidgets.embed, the state of all widgets known to the widget manager is included
by default. You can alternatively pass a reduced state to use instead. This can be particularly relevant if you have many
independent widgets with a large state, but only want to include the relevant ones in your export. To include only the
state of specific views and their dependencies, use the function dependency_state:

from ipywidgets.embed import embed_minimal_html, dependency_state

s1 = IntSlider(max=200, value=100)
s2 = IntSlider(value=40)
embed_minimal_html('export.html', views=[s1, s2], state=dependency_state([s1, s2]))

88 Chapter 1. Full Table of Contents

http://jinja.pocoo.org/

ipywidgets Documentation, Release 7.6.2

Embedding Widgets in the Sphinx HTML Documentation

As of ipywidgets 6.0, Jupyter interactive widgets can be rendered in Sphinx html documentation. Two means of
achieving this are provided:

Using the Jupyter Sphinx Extension

The jupyter_sphinx extension enables jupyter-specific features in sphinx. It can be installed with pip and conda.

In the conf.py sphinx configuration file, add jupyter_sphinx to the list of enabled extensions.

Then use the jupyter-execute directive to embed the output of code execution in your documentation

.. jupyter-execute::

from ipywidgets import VBox, jsdlink, IntSlider, Button
s1, s2 = IntSlider(max=200, value=100), IntSlider(value=40)
b = Button(icon='legal')
jsdlink((s1, 'value'), (s2, 'max'))
VBox([s1, s2, b])

Using the nbsphinx Project

The nbsphinx Sphinx extension provides a source parser for *.ipynb files. Custom Sphinx directives are used to
show Jupyter Notebook code cells (and of course their results) in both HTML and LaTeX output. In the case of the
HTML output, Jupyter Interactive Widgets are also supported.

For notebooks that are executed by nbsphinx the widget state is automatically generated. For others, it is a re-
quirement that the notebook was correctly saved with the special “Save Notebook Widget State” action in the widgets
menu.

The necessary JavaScript code is automatically embedded in the generated HTML files. A custom URL or a local
JavaScript file can be specified with the nbsphinx_widgets_path configuration option. For more configuration
options, have a look at the documentation.

Rendering Interactive Widgets on nbviewer

If your notebook was saved with the special “Save Notebook Widget State” action in the Widgets menu, interactive
widgets displayed in your notebook should also be rendered on nbviewer.

See e.g. the Widget List example from the documentation.

The Case of Custom Widget Libraries

Custom widgets can also be rendered on nbviewer, static HTML and RTD documentation. An illustration of this is the
http://jupyter.org/widgets gallery.

The widget embedder attempts to fetch the model and view implementation of the custom widget from the npm CDN
https://unpkg.com by default. The URL that is requested for, e.g. the bqplot module name, with the semver range
^2.0.0 is

https://unpkg.com/bqplot@^2.0.0/dist/index.js

which holds the webpack bundle for the bqplot library.

1.1. User Guide 89

https://jupyter-sphinx.readthedocs.io
https://nbsphinx.readthedocs.io/
https://nbsphinx.readthedocs.io/usage.html
http://nbviewer.jupyter.org/github/jupyter-widgets/ipywidgets/blob/master/docs/source/examples/Widget%20List.ipynb

ipywidgets Documentation, Release 7.6.2

While the default CDN is using https://unpkg.com it can be configured by setting the optional
data-jupyter-widgets-cdn attribute for script tag which loads embed-amd.js, as shown in the ex-
ample above.

The widget-cookiecutter template project contains a template project for a custom widget library following the best
practices for authoring widgets, which ensure that your custom widget library can render on nbviewer.

Using jupyter-widgets-controls in web contexts

The core jupyter-widgets-controls library, the JavaScript package of ipywidgets, is agnostic to the context
in which it is used (Notebook, JupyterLab, static web page). For each context, we specialize the base widget manager
implemented in @jupyter-widgets/base to provide the logic for

• where widgets should be displayed,

• how to retrieve information about their state.

Specifically:

• The widgetsnbextension Python package provides the implementation of a specialized widget manager
for the classic Jupyter notebook, and the packaging logic as a notebook extension.

• The @jupyter-widgets/jupyterlab-manager npm package provides the implementation of a spe-
cialized widget manager for the context of JupyterLab, and the packaging logic as a lab extension.

• The embed manager implemented in the @jupyter-widgets/html-manager npm package is a special-
ization of the base widget manager used for the static embedding of widgets used by the Sphinx extension,
nbviewer, and the “Embed Widgets” command discussed above.

We provide additional examples of specializations of the base widget manager implementing other usages of Jupyter
widgets in web contexts.

1. The web1 example is a simplistic example showcasing the use of Jupyter widgets in a web context.

2. The web2 example is a simple example making use of the application/vnd.jupyter.
widget-state+json mime type.

3. The web3 example showcases how communication with a Jupyter kernel can happen in a web context outside
of the notebook or jupyterlab contexts.

4. The web-tmpnb example makes use of the tmpnb service to spawn a Jupyter server, request a kernel from
this server and implement the same feature as the web3 example.

1.1.13 Contributing

We appreciate contributions from the community.

We follow the IPython Contributing Guide and Jupyter Contributing Guides.

90 Chapter 1. Full Table of Contents

https://github.com/jupyter/widget-cookiecutter
https://github.com/jupyter-widgets/ipywidgets/tree/master/examples
https://github.com/jupyter-widgets/ipywidgets/tree/master/examples/web1
https://github.com/jupyter-widgets/ipywidgets/tree/master/examples/web2
https://github.com/jupyter-widgets/ipywidgets/tree/master/examples/web3
https://github.com/jupyter-widgets/ipywidgets/tree/master/examples/web-tmpnb
https://github.com/ipython/ipython/blob/master/CONTRIBUTING.md
https://jupyter.readthedocs.io/en/latest/contributor/content-contributor.html

ipywidgets Documentation, Release 7.6.2

1.1.14 Migrating custom widget libraries

These are migration guides aimed specifically at developers of third-party widgets.

Migrating from 6.0 to 7.0

For example migrations, see these PRs:

• ipyleaflet

• jupyter-gmaps

• bqplot: PR #458, PR #497 and PR #501

To avoid tying your development cycle to ipywidgets, we recommend starting the migration on a branch and keeping
that branch open until ipywidgets 7.0 is released.

We also recommend testing the migration in a completely new notebook, rather than one that contains widgets that
you instantiated with ipywidgets 6.0.

Updating setup.py

Start by updating the dependency in your setup.py to the latest release. To find the correct version number, go to
the releases page on Github and cycle through the tags until you see the latest 7.0.0 tag.

Updating package.json

Next, we should update the JavaScript dependencies. The most important change for widget developers
is that the JavaScript package for jupyter-widgets has been split between @jupyter-widgets/base and
@jupyter-widgets/controls:

• @jupyter-widgets/base contains the base widget classes and the layout classes

• @jupyter-widgets/controls contains the widget classes for the user-facing widgets.

In your package.json, remove jupyter-js-widgets from your dependencies and add
@jupyter-widgets/base. To find the correct version, go to the releases page and cycle through the tags
until you see a tag called @jupyter-widgets/base@<version>. Do the same for @jupyter-widgets/
controls if you think you have a dependency on it (e.g. if you create widgets that inherit from VBox or HBox or
another user-facing widget).

Updating Webpack configuration

If you use Webpack to build the client-side library, your Webpack configuration file (probably at js/webpack.
config.json) declares jupyter-js-widgets as an external dependency. You will need to change this in
both the bundle for the notebook and the embeddable bundle. If you just need @jupyter-widgets/base, your
external dependencies would be:

externals: ['@jupyter-widgets/base']

If you need both @jupyter-widgets/base and @jupyter-widgets/controls, include both packages in
the array.

The cookiecutter template provides a sample configuration.

1.1. User Guide 91

https://github.com/ellisonbg/ipyleaflet/pull/66
https://github.com/pbugnion/gmaps/pull/166
https://github.com/bloomberg/bqplot/pull/458
https://github.com/bloomberg/bqplot/pull/497
https://github.com/bloomberg/bqplot/pull/501
https://github.com/jupyter-widgets/ipywidgets/releases
https://github.com/jupyter-widgets/ipywidgets/releases
https://github.com/jupyter-widgets/widget-cookiecutter/blob/master/%7B%7Bcookiecutter.github_project_name%7D%7D/js/webpack.config.js

ipywidgets Documentation, Release 7.6.2

Updating the client-side code

If you now build the client-side code of your library, you will get many errors about missing jupyter-js-widgets
dependencies. You need to replace every import of jupyter-js-widgets with an import of
@jupyter-widgets/base (or, possibly, an import of @jupyter-widgets/controls).

Your imports should now look like one of the following (depending on how you normally import other modules):

widgets = require('@jupyter-widgets/base')

require(['@jupyter-widgets/base'], function(widgets) {
})

import * as widgets from '@jupyter-widgets/base'

All your widget models should also declare the attributes _view_module_version and
_model_module_version. A minimal model now looks like:

var HelloModel = widgets.DOMWidgetModel.extend({
defaults: _.extend(widgets.DOMWidgetModel.prototype.defaults(), {

_model_name : 'HelloModel',
_view_name : 'HelloView',
_model_module : 'example_module',
_view_module : 'example_module',
_model_module_version : '~1.0.0',
_view_module_version : '~1.0.0'

})
});

For embedding to work correctly, the module version needs to be a semantic version range that matches a release on
NPM. The most common pattern is to request a version compatible with the version currently in your package.json
by using, ~{{ version number }} for _model_module_version and _view_module_version. See
the cookiecutter template for details.

Since you probably want to avoid repeating the module version in every widget, a common pattern is to import the
version from package.json and prepend a ~. See ipyvolume for an example. If you do this, make sure that your
webpack configuration includes a JSON loader. See the Webpack configuration for ipyvolume for an example.

Updating the notebook extension

Previously, the notebook extension (normally js/src/extension.js) required defining
jupyter-js-widgets in the configuration for requirejs. This is no longer needed. See the cookiecutter
template for an example of the correct requirejs configuration.

Updating the Python code

All widgets need to declare the following six traitlets:

class ExampleWidget(widgets.Widget):
_model_name = Unicode('name of model in JS')
_view_name = Unicode('name of view in JS')
_model_module = Unicode('name your JS package')
_view_module = Unicode('name your JS package')

(continues on next page)

92 Chapter 1. Full Table of Contents

https://docs.npmjs.com/getting-started/semantic-versioning
https://github.com/jupyter-widgets/widget-cookiecutter/blob/master/%7B%7Bcookiecutter.github_project_name%7D%7D/js/lib/example.js#L24
https://github.com/maartenbreddels/ipyvolume/blob/master/js/src/figure.js#L1245
https://github.com/maartenbreddels/ipyvolume/blob/master/js/webpack.config.js#L7
https://github.com/jupyter-widgets/widget-cookiecutter/blob/master/%7B%7Bcookiecutter.github_project_name%7D%7D/js/src/extension.js
https://github.com/jupyter-widgets/widget-cookiecutter/blob/master/%7B%7Bcookiecutter.github_project_name%7D%7D/js/src/extension.js

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

_model_module_version = Unicode('version of your JS bundle')
_view_module_version = Unicode('version of your JS bundle')

It is likely that your widgets already declared a _model_name, _view_name, _model_module and
_view_module. The _model_module and _view_module should be the name of your package on
NPM (the value of the name field in your package.json). The _model_module_version and
_view_module_version should be the version of your JavaScript client (the values of the version field in
your package.json).

The _model_module_version and _view_module_version are used to find your JavaScript bun-
dle when embedding widgets. The embed manager will look for the bundle at https://unpkg.com/
<module-name>@<module-version>/dist/index.js when it finds a widget.

Updating embedded widgets

There are now two options for embedding widgets in an HTML page outside of the notebook.

Embedding the standard widgets

If you are just embedding the standard widgets that come with ipywidgets, then you can simply include the following
script tag:

<script src="https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed.js"
→˓crossorigin="anonymous"></script>

If you want to use a specific version of the embedder, you replace the @* with a semver range, such as @^0.9.0

Embedding custom widgets with RequireJS

In order to embed third-party widgets, you can use the RequireJS-based embedding. First, make sure that RequireJS
is loaded on the page, for example:

<!-- Load require.js. Delete this if your page already loads require.js -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"
→˓integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" crossorigin=
→˓"anonymous"></script>

Then include the following script, which defines the embedding libraries and runs the function to render widgets:

<script src="https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed-amd.js"
→˓crossorigin="anonymous"></script>

If you want to use a specific version of the embedder, you replace the @* with a semver range, such as @^0.9.0

If you need to embed custom widgets without using RequireJS, you’ll need to compile your own embedding javascript
that includes the third-party libraries.

1.1. User Guide 93

ipywidgets Documentation, Release 7.6.2

1.1.15 ipywidgets changelog

A summary of changes in ipywidgets. For more detailed information, see the issues and pull requests for the appro-
priate milestone on GitHub.

7.6

To see the full list of pull requests and issues, see the 7.6.0 milestone on GitHub.

The main change in this release is that installing ipywidgets 7.6.0 will now automatically enable ipywidgets sup-
port in JupyterLab 3.0—a user has no extra JupyterLab installation step and no rebuild of JupyterLab, nor do they need
Node.js installed. Simply install the python ipywidgets package with pip (pip install ipywidgets==7.6.0)
or conda/mamba (conda install -c conda-forge ipywidgets=7.6.0) and ipywidgets will automati-
cally work in classic Jupyter Notebook and in JupyterLab 3.0.

This is accomplished with the new python package jupyterlab_widgets version 1.0, on which ipywidgets
7.6.0 now depends (similar to how ipywidgets already depends on the widgetsnbextension package to con-
figure ipywidgets for the classic Jupyter Notebook). The jupyterlab_widgets Python package is a JupyterLab
3.0 prebuilt extension, meaning that it can be installed into JupyterLab 3.0 without rebuilding JupyterLab and without
needing Node.js installed.

Updates for Widget Maintainers

Custom widget maintainers will need to make two changes to update for JupyterLab 3:

1. Update the @jupyter-widgets/base dependency version to include ^4 to work in JupyterLab 3.0. For
example, if you had a dependency on @jupyter-widgets/base version ^2 || ^3, update to ^2 ||
^3 || ^4 for your widget to work in classic Jupyter Notebook, JupyterLab 1, JupyterLab 2, and JupyterLab
3. See #2472 for background.

2. In the package.json, add the following sharedPackages configuration inside the jupyterlab key.
See the JupyterLab extension documentation for more information.

"jupyterlab": {
"sharedPackages": {
"@jupyter-widgets/base": {
"bundled": false,
"singleton": true

}
}

}

Separate from these two steps to update for JupyterLab 3, we also recommend that you make your widget’s JupyterLab
extension a prebuilt extension for JupyterLab 3.0. Users will be able to install your JupyterLab 3.0 prebuilt extension
without rebuilding JupyterLab or needing Node.js. See the JupyterLab 3 extension developer documentation or the
new widget extension cookiecutter for more details.

94 Chapter 1. Full Table of Contents

https://github.com/jupyter-widgets/ipywidgets
https://github.com/jupyter-widgets/ipywidgets/milestone/31?closed=1
https://github.com/jupyter-widgets/ipywidgets/pull/2472
https://jupyterlab.readthedocs.io/en/stable/extension/extension_dev.html#requiring-a-service
https://jupyterlab.readthedocs.io/en/stable/extension/extension_dev.html
https://github.com/jupyter-widgets/widget-ts-cookiecutter/tree/jlab3

ipywidgets Documentation, Release 7.6.2

7.5

To see the full list of pull requests and issues, see the 7.5 milestone on GitHub.

Changes include:

• New AppLayout and GridLayout templates for positioning interactive widgets. #2333

• New FileUpload widget allowing users to upload files from the browser. #2258

• New ComboBox widget. #2390

• JupyterLab CSS variables are now exposed by default even in the case of the classic notebook. #2418

Updates for Widget Maintainers

Custom widget maintainers will need to update their @jupyter-widgets/base dependency version to work in
JupyterLab 1.0. For example, if you had a dependency on @jupyter-widgets/base version ^1.1, update to
^1.1 || ^2 for your widget to work in classic notebook, JupyterLab 0.35, and JupyterLab 1.0. See #2472 for
background.

7.4

To see the full list of pull requests and issues, see the 7.4 milestone on GitHub.

Changes include:

• New Video and Audio widgets have been introduced. #2162 We updated the @jupyter-widgets/
controls widget specification version to 1.4.0, leading to the version bump to 7.4.

• The use of mappings for the options attribute of selection widgets is deprecated. #2130

7.3

To see the full list of pull requests and issues, see the 7.3 milestone on GitHub.

Changes include:

• A new GridBox widget is introduced and associated CSS grid properties are added to the layout. This enables
using the CSS Grid spec for laying out widgets. See the Widget Styling documentation for some examples. Be-
cause of this and other model specification changes, the view and module versions of widgets was incremented
in both the base and controls packages. (#2107, #2064, #1942)

• Widgets with a description attribute now also have a description_tooltip attribute to set a tooltip
on the description. The tooltip defaults to the description text. Setting description_tooltip to ''
removes it, and setting it to None makes the tooltip default to the description text. (#2070)

• 'transparent' is now a valid color for color attributes. (#2128)

• Dropdowns now have extra padding to make room for the dropdown arrow. (#2052, #2101)

• Image widget repr now truncates the image value to prevent huge amounts of output in notebooks. (#2111)

• Python 3.3 support is dropped. Python 3.3 support was dropped in the Python community in September 2017.
(#2129)

• The license information has been consolidated into the LICENSE file, and the COPYING.md file is removed.
If you are repackaging ipywidgets or widgetsnbextension, please make sure to include LICENSE instead of
COPYING.md. (#2133, #2048, #1701, #1706)

1.1. User Guide 95

https://github.com/jupyter-widgets/ipywidgets/milestone/268?closed=1
https://github.com/jupyter-widgets/ipywidgets/pull/2333
https://github.com/jupyter-widgets/ipywidgets/pull/2258
https://github.com/jupyter-widgets/ipywidgets/pull/2390
https://github.com/jupyter-widgets/ipywidgets/pull/2418
https://github.com/jupyter-widgets/ipywidgets/pull/2472
https://github.com/jupyter-widgets/ipywidgets/milestone/26?closed=1
https://github.com/jupyter-widgets/ipywidgets/pull/2162
https://github.com/jupyter-widgets/ipywidgets/pull/2130
https://github.com/jupyter-widgets/ipywidgets/milestone/26?closed=1
http://ipywidgets.readthedocs.io/en/stable/examples/Widget%20Styling.html
https://github.com/jupyter-widgets/ipywidgets/pull/2107
https://github.com/jupyter-widgets/ipywidgets/pull/2064
https://github.com/jupyter-widgets/ipywidgets/issues/1942
https://github.com/jupyter-widgets/ipywidgets/pull/2070
https://github.com/jupyter-widgets/ipywidgets/pull/2128
https://github.com/jupyter-widgets/ipywidgets/issues/2052
https://github.com/jupyter-widgets/ipywidgets/pull/2101
https://github.com/jupyter-widgets/ipywidgets/pull/2111
https://www.python.org/dev/peps/pep-0398/#x-end-of-life
https://github.com/jupyter-widgets/ipywidgets/pull/2129
https://github.com/jupyter-widgets/ipywidgets/pull/2133
https://github.com/jupyter-widgets/ipywidgets/pull/2048
https://github.com/jupyter-widgets/ipywidgets/issues/1701
https://github.com/jupyter-widgets/ipywidgets/pull/1706

ipywidgets Documentation, Release 7.6.2

7.2

To see the full list of pull requests and issues, see the 7.2 milestone on GitHub.

User-visible changes include:

• A new FloatLogSliderwidget is a slider with a log scale, suitable for exploring a wide range of magnitudes.
(#1928, #2014)

from ipywidgets import FloatLogSlider
FloatLogSlider()

• link and dlink are now exported from ipywidgets for convenience, so that you can import them directly
from ipywidgets instead of needing to import them from traitlets. (#1923)

• A new option manual_name has been added to interact_manual() to change the name of the update
button, for example interact_manual(manual_name='Update'). (#1924)

• The Output widget now has a .capture() method, which returns a decorator to capture the output of a
function.

from ipywidgets import Output
out = Output()

@out.capture()
def f():
print('This output is captured')

The .capture() method has a clear_output boolean argument to automatically clear the output every
time the function is run, as well as a wait argument corresponding to the clear_output wait argument.
(#1934)

• The Output widget has much more comprehensive documentation in its own section. (#2020)

• Installing widgetsnbextension now automatically enables the nbextension in Jupyter Notebook 5.3 or
later. (#1911)

• The default rendering of a widget if widgets are not installed is now a short description of the widget in text
instead of a much longer HTML message. (#2007)

Changes for developers include:

• The JavaScript base widget manager class now has a resolveUrl method to resolve a URL relative to the
current notebook location. (#1993)

• The html manager now exposes a way to specify which JavaScript file is fetched for a package and the loader
used to fetch the library. (#1995, #1998)

• The @jupyter-widgets/controlswidget specification version was bumped to 1.2.0. Changes include
the FloatLogSlider widget and more specific documentation about array element types. (#2017)

96 Chapter 1. Full Table of Contents

https://github.com/jupyter-widgets/ipywidgets/milestone/25?closed=1
https://github.com/jupyter-widgets/ipywidgets/pull/1928
https://github.com/jupyter-widgets/ipywidgets/pull/2014
https://github.com/jupyter-widgets/ipywidgets/pull/1923
https://github.com/jupyter-widgets/ipywidgets/pull/1923
https://github.com/jupyter-widgets/ipywidgets/pull/1934
https://github.com/jupyter-widgets/ipywidgets/pull/2020
https://github.com/jupyter-widgets/ipywidgets/pull/1911
https://github.com/jupyter-widgets/ipywidgets/pull/2007
https://github.com/jupyter-widgets/ipywidgets/pull/1993
https://github.com/jupyter-widgets/ipywidgets/pull/1995
https://github.com/jupyter-widgets/ipywidgets/pull/1998
https://github.com/jupyter-widgets/ipywidgets/pull/2017

ipywidgets Documentation, Release 7.6.2

7.1

To see the full list of pull requests and issues, see the 7.1 milestone on GitHub.

We updated the @jupyter-widgets/controls widget specification version to 1.1.0, leading to the version
bump to 7.1. The new widget model specification now includes new description_width and font_weight
attributes for the ToggleButtonsStyle widget. There are also other bugfixes in this release.

7.0.x patch releases

See the GitHub milestones for the 7.0.1, 7.0.2, 7.0.3, 7.0.4, and 7.0.5 releases for bugfixes in these releases.

7.0

To see the full list of pull requests and issues, see the 7.0 milestone on GitHub.

Major user-visible changes in ipywidgets 7.0 include:

• Widgets are now displayed in the output area in the classic notebook and are treated as any other output. This
allows the widgets to work more naturally with other cell output. To delete a widget, clear the output from the
cell. Output from functions triggered by a widget view is appended to the output area that contains the widget
view. This means that printed text will be appended to the output, and calling clear_output() will delete
the entire output, including the widget view. (#1274, #1353)

• Removed the version validation check since it was causing too many false warnings about the widget javascript
not being installed or the wrong version number. It is now up to the user to ensure that the ipywidgets and
widgetsnbextension packages are compatible. (#1219)

• The documentation theme is changed to the new standard Jupyter theme. (#1363)

• The layout and style traits can be set with a dictionary for convenience, which will automat-
ically converted to a Layout or Style object, like IntSlider(layout={'width': '100%'},
style={'handle_color': 'lightgreen'}). (#1253)

• The Select widget now is a listbox instead of a dropdown, reverting back to the pre-6.0 behavior. (#1238)

• The Select and SelectMultiple widgets now have a rows attribute for the number of rows to display, consistent
with the Textarea widget. The layout.height attribute overrides this to control the height of the widget.
(#1250)

• Selection widgets (Select, Dropdown, ToggleButtons, etc.) have new .value, .label, and .index
traits to make it easier to access or change the selected option. (#1262, #1513)

• Selection container widgets (Accordion, Tabs) can have their .selected_index set to None to deselect
all items. (#1495)

• The Play widget range is now inclusive (max value is max, instead of max-1), to be consistent with Sliders

• The Play widget now has an optional repeat toggle button (visible by default). (#1190)

• A refactoring of the text, slider, slider range, and progress widgets in resulted in the progress widgets losing their
step attribute (which was previously ignored), and a number of these widgets changing their _model_name
and/or _view_name attributes (#1290)

• The Checkbox description is now on the right of the checkbox and is clickable. The Checkbox widget has
a new indent attribute (defaults to True) to line up nicely with controls that have descriptions. To make the
checkbox align to the left, set indent to False. (#1346)

• A new Password widget, which behaves exactly like the Text widget, but hides the typed text: Password().
(#1310)

1.1. User Guide 97

https://github.com/jupyter-widgets/ipywidgets/milestone/23?closed=1
https://github.com/jupyter-widgets/ipywidgets/milestone/16?closed=1
https://github.com/jupyter-widgets/ipywidgets/milestone/17?closed=1
https://github.com/jupyter-widgets/ipywidgets/milestone/18?closed=1
https://github.com/jupyter-widgets/ipywidgets/milestone/20?closed=1
https://github.com/jupyter-widgets/ipywidgets/milestone/21?closed=1
https://github.com/jupyter-widgets/ipywidgets/milestone/12?closed=1
https://github.com/jupyter-widgets/ipywidgets/pull/1274
https://github.com/jupyter-widgets/ipywidgets/pull/1353
https://github.com/jupyter-widgets/ipywidgets/pull/1219
https://github.com/jupyter-widgets/ipywidgets/pull/1363
https://github.com/jupyter-widgets/ipywidgets/pull/1253
https://github.com/jupyter-widgets/ipywidgets/pull/1238
https://github.com/jupyter-widgets/ipywidgets/pull/1250
https://github.com/jupyter-widgets/ipywidgets/pull/1262
https://github.com/jupyter-widgets/ipywidgets/pull/1513
https://github.com/jupyter-widgets/ipywidgets/pull/1495
https://github.com/jupyter-widgets/ipywidgets/pull/1190
https://github.com/jupyter-widgets/ipywidgets/pull/1290
https://github.com/jupyter-widgets/ipywidgets/pull/1346
https://github.com/jupyter-widgets/ipywidgets/pull/1310

ipywidgets Documentation, Release 7.6.2

• A new SelectionRangeSlider widget for selecting ranges from ordered lists of objects. For example, this enables
having a slider to select a date range. (#1356)

• The Label widget now has no width restriction. (#1269)

• The description width is now configurable with the .style.description_width attribute (#1376)

• ToggleButtons have a new .style.button_width attribute to set the CSS width of the buttons. Set this to
'initial' to have buttons that individually size to the content width. (#1257)

• The readout_format attribute of number sliders now validates its argument. (#1550)

• The IntRangeSlider widget now has a .readout_format trait to control the formatting of the readout.
(#1446)

• The Text, Textarea, IntText, BoundedIntText, FloatText, and BoundedFloatText widgets
all gained a continuous_update attribute (defaults to True for Text and TextArea, and False for
the others). (#1545)

• The IntText, BoundedIntText, FloatText, and BoundedFloatText widgets are now rendered as
HTML number inputs, and have a step attribute that controls the resolution. (#1545)

• The Text.on_submit callback is deprecated; instead, set continuous_update to False and
observe the value attribute: mywidget.observe(callback, 'value'). The Textarea.
scroll_to_bottom method was removed. (#1545)

• The msg_throttle attribute on widgets is now gone, and the code has a hardcoded message throttle equiva-
lent to msg_throttle=1. (#1557)

• Using function annotations to specify interact controls for a function is now deprecated and will be removed in
a future version of ipywidgets. (#1292)

• There are now two simple ways to embed widgets in an HTML page: with a simple script tag that does not use
require.js and does not support anything but the basic widgets, and a require module that does support custom
widgets. See the migration guide for more details. (#1615, #1629, #1630)

If you are developing a custom widget or widget manager, here are some major changes that may affect you. The
migration guide also walks through how to upgrade a custom widget.

• On the Python/kernel side:

– The Python @register decorator for widget classes no longer takes a string argument, but regis-
ters a widget class using the _model_* and _view_* traits in the class. Using the decorator as
@register('name') is deprecated and should be changed to just @register. #1228, #1276

– Widgets will now need correct _model_module and _view_module Unicode traits defined.

– Selection widgets now sync the index of the selected item, rather than the label. (#1262)

– The Python ipywidget.domwidget.LabeledWidget is now ipywidget.
widget_description.DescriptionWidget, and there is a new ipywidget.
widget_description.DescriptionStyle that lets the user set the CSS width of the description.

– Custom serializers can now return a structure that contains binary objects (memoryview, bytearray,
or Python 3 bytes object). In this case, the sync message will be a binary message, which is much more
efficient for binary data than base64-encoding. The Image widget now uses this binary synchronization.
(#1194, #1595, #1643)

• On the Javascript side:

– The jupyter-js-widgets Javascript package has been split into @jupyter-widgets/base
package (containing base widget classes, the DOM widget, and the associated layout and style classes),
and the @jupyter-widgets/controls package (containing the rest of the Jupyter widgets controls).
Authors of custom widgets will need to update to depend on @jupyter-widgets/base instead of

98 Chapter 1. Full Table of Contents

https://github.com/jupyter-widgets/ipywidgets/pull/1356
https://github.com/jupyter-widgets/ipywidgets/pull/1269
https://github.com/jupyter-widgets/ipywidgets/pull/1376
https://github.com/jupyter-widgets/ipywidgets/pull/1257
https://github.com/jupyter-widgets/ipywidgets/pull/1550
https://github.com/jupyter-widgets/ipywidgets/pull/1446
https://github.com/jupyter-widgets/ipywidgets/pull/1545
https://github.com/jupyter-widgets/ipywidgets/pull/1545
https://github.com/jupyter-widgets/ipywidgets/pull/1545
https://github.com/jupyter-widgets/ipywidgets/pull/1557
https://github.com/jupyter-widgets/ipywidgets/pull/1292
https://github.com/jupyter-widgets/ipywidgets/pull/1615
https://github.com/jupyter-widgets/ipywidgets/pull/1629
https://github.com/jupyter-widgets/ipywidgets/pull/1630
https://github.com/jupyter-widgets/ipywidgets/pull/1228
https://github.com/jupyter-widgets/ipywidgets/pull/1276
https://github.com/jupyter-widgets/ipywidgets/pull/1262
https://github.com/jupyter-widgets/ipywidgets/pull/1194
https://github.com/jupyter-widgets/ipywidgets/pull/1595
https://github.com/jupyter-widgets/ipywidgets/pull/1643

ipywidgets Documentation, Release 7.6.2

jupyter-js-widgets (if you use a class from the controls package, you will also need to depend on
@jupyter-widgets/controls). See the cookie cutter to generate a simple example custom widget
using the new packages.

– Custom serializers in Javascript are now synchronous, and should return a snapshot of the widget state.
The default serializer makes a copy of JSONable objects. (#1270)

– Custom serializers can now return a structure that contains binary objects (ArrayBuffer, DataView,
or a typed array such as Int8Array, Float64Array, etc.). In this case, the sync message will be a
binary message, which is much more efficient for binary data than base64-encoding. The Image widget
now uses this binary synchronization. (#1194, #1643)

– A custom serializer is given the widget instance as its second argument, and a custom deserializer is given
the widget manager as its second argument.

– The Javascript model .id attribute has been renamed to .model_id to avoid conflicting with the Back-
bone .id attribute. (#1410)

• Regarding widget managers and the syncing message protocol:

– The widget protocol was significantly overhauled. The new widget messaging protocol (version 2) is
specified in the version 2 protocol documentation.

– Widgets are now displayed with a display_data message instead of with a custom comm message.
See the ipywidgets implementation for an example. (#1274)

– Custom widget managers are now responsible completely for loading widget model and view classes.
Widget managers should provide an output model and view class appropriate for their environment so that
the Output widget works. (#1313)

– The widget manager clear_state method no longer has a commlessOnly argument. All models in
the widget manager will be closed and cleared when clear_state is called. (#1354)

6.0

Major user-visible changes in ipywidgets 6.0 include:

• Rendering of Jupyter interactive widgets in various web contexts

sphinx documentation: http://ipywidgets.readthedocs.io/en/latest/examples/Widget%20List.html nbviewer:
http://nbviewer.jupyter.org/github/jupyter-widgets/ipywidgets/blob/master/docs/source/examples/Widget%20List.ipynb
Static web pages: http://jupyter.org/widgets

• Addition of a DatePicker widget in the core widget collection.

• Changes to the automatic control generation syntax in @interact, inspired by the Sage interact syntax.

• Removal of APIs which had been deprecated in 5.0, including top-level styling in attributes of DOMWidgets
and some corner cases in the behavior of @interact.

• A new API for custom styling of widgets is provided, through a top-level style attribute. For example, the
color of a slider handler can be set by slider.style.handle_color.

• Removal of the Proxy and PlaceProxy widgets.

• Removal of the deprecated FlexBox widget. Use the Box, HBox, or VBox widgets instead. Various flex
properties can be set using the layout attribute.

• Removal of the deprecated Latex widget. Use the new HTMLMath widget with Latex math inside $ or $$
delimiters instead.

• Removal of the deprecated layout properties on a widget such as .width, .height, etc. Use the layout
attribute with a Layout widget to manage various layout properties instead.

1.1. User Guide 99

https://github.com/jupyter-widgets/widget-cookiecutter
https://github.com/jupyter-widgets/ipywidgets/pull/1270
https://github.com/jupyter-widgets/ipywidgets/pull/1194
https://github.com/jupyter-widgets/ipywidgets/pull/1643
https://github.com/jupyter-widgets/ipywidgets/pull/1410
https://github.com/jupyter-widgets/ipywidgets/blob/master/jupyter-widgets-schema/messages.md
https://github.com/jupyter-widgets/ipywidgets/blob/20cd0f050090b1b19bb9657b8c3fa42ae384cfca/ipywidgets/widgets/widget.py#L656
https://github.com/jupyter-widgets/ipywidgets/pull/1274
https://github.com/jupyter-widgets/ipywidgets/pull/1313
https://github.com/jupyter-widgets/ipywidgets/pull/1354

ipywidgets Documentation, Release 7.6.2

• The Label widget now has styling to make it consistent with labels on various widgets. To have freeform text
with mathematics, use the new HTMLMath widget.

• Removal of the button_style attribute of the Dropdown widget

• Addition of an OutputWidget for capturing output and rich display objects. @interact has changed to use an
OutputWidget for function output instead of overwriting the output area of a cell.

• The jupyter-js-widgets Javascript implementation now relies on the PhosphorJS framework for the management
of rich layout and a better integration of JupyterLab.

• Numerous bug fixes.

Note for custom widget authors:

ipywidgets 6.0 breaks backward compatibility with respect to the handling of default values of the JavaScript side.
Now, the default values for core widget models are specified with a default() method returning a dictionary
instead of a default dictionary attribute. If you want your library to be backwards compatible with ipywidgets 5.x,
you could use _.result like this:

...
defaults: function() {

return _.extend(_.result(this, 'widgets.DOMWidgetModel.prototype.defaults'), {
....

})
},
...

This should not have an impact when using your custom widgets in the classic notebook, but will be really important
when deploying your interactive widgets in web contexts.

5.x

4.1.x

4.1.1

4.1.0

4.0.x

4.0.3

Bump version with miscellaneous bug fixes.

4.0.2

Add README.rst documentation.

100 Chapter 1. Full Table of Contents

http://underscorejs.org/#result

ipywidgets Documentation, Release 7.6.2

4.0.1

Remove ipynb checkpoints.

4.0.0

First release of ipywidgets as a standalone package.

1.2 Developer Docs

The Jupyter widgets packages are developed in the https://github.com/jupyter-widgets/ipywidgets git repository. See
the issue tracker, README, and other Github documents for the most recent information.

1.2.1 Scope of ipywidgets

ipywidgets is a framework to provide eventful python objects that have a representation in the browser (see exam-
ples/Widget Basics.ipynb for more on the definition of widgets). This requires two components:

1. The framework for widget interactions between the widgets represented in the Python kernel and the (javascript)
representation of the widgets in the browser.

2. A basic, lightweight set of form controls that use this framework, based on standard HTML form controls.
These included controls include a text area, text box, select and multiselect controls, checkbox, etc. A few more
advanced controls that are very popular are also included, such as a slider and basic tab panels.

The framework for building rich interactive objects is the foremost purpose of the ipywidgets project, and the set of
included reference form controls is purposefully kept small and self-contained to serve as something like a reference
implementation. We encourage and support a robust ecosystem of packages built on top of the ipywidgets framework
to provide more complicated interactive objects, such as maps or 2d and 3d visualizations, or other form control
systems built on a variety of popular Javascript frameworks such as Material or Vue.

1.2.2 Additional Developer Docs

Developer Install

Prerequisites

To install ipywidgets from git, you will need:

• yarn package manager ** version 1.2.1 or later **

• the latest Jupyter Notebook development release

– Everything in the ipywidgets repository is developed using Jupyter notebook’s master branch.

– If you want to have a copy of ipywidgets that works against a stable version of the notebook, checkout the
appropriate tag.

– See the Compatibility table

• the latest JupyterLab release

1.2. Developer Docs 101

https://github.com/jupyter-widgets/ipywidgets
https://yarnpkg.com/
https://github.com/jupyter/notebook/releases
https://github.com/jupyter-widgets/ipywidgets#compatibility
https://github.com/jupyterlab/jupyterlab/releases

ipywidgets Documentation, Release 7.6.2

Installing With Conda

conda create -c conda-forge -n ipywidgets yarn notebook
conda activate ipywidgets
ipython kernel install --name ipywidgets --display-name "ipywidgets" --sys-prefix
pip install --pre jupyterlab
git clone https://github.com/jupyter-widgets/ipywidgets.git
cd ipywidgets
./dev-install.sh

Notice that we install the prerelease of JupyterLab currently, which is only available via pip.

Rebuilding after making changes

To build and test changes, run the following commands in the ipywidgets repository root directory, empty your
browser’s cache, and refresh the page.

yarn run clean
yarn run build

If your changes are confined to one package (for example, just in the widgetsnbextension package), then it may be
sufficient to just run yarn run build in that specific directory.

Tips and troubleshooting

• If you have any problems with the above install procedure, make sure that permissions on npm and pip related
install directories are correct.

• Sometimes, it helps to clear cached files too by running git clean -dfx from the root of the cloned repos-
itory.

• When you make changes to the Javascript and you’re not seeing the changes, it could be your browser is caching
aggressively. Try clearing the browser’s cache. Try also using “incognito” or “private” browsing tabs to avoid
caching.

• If troubleshooting an upgrade and its build, you may need to do the following process:

– Deep clean of the cloned repository:

git clean -dfx .

– Remove anything with widgetsnbextension in the name of files within the conda directory

– Try reinstalling ipywidgets

102 Chapter 1. Full Table of Contents

ipywidgets Documentation, Release 7.6.2

Updating widget model specification

To update the widget model specification with changes, do something like this in the repo root:

python ./packages/schema/generate-spec.py > packages/schema/jupyterwidgetmodels.
→˓latest.md

Releasing new versions

See dev_release.md for a details on how to release new versions of ipywidgets to PyPI and jupyter-widgets-controls
on npm.

Testing

See dev_testing.md for a details on how to run Python and Javascript tests.

Building documentation

See dev_docs.md for a details on how to build the docs.

Testing

To run the Python tests:

pytest --cov=ipywidgets ipywidgets

To run the Javascript tests in each package directory:

yarn test

This will run the test suite using karma with ‘debug’ level logging.

Building the Documentation

To build the documentation you’ll need Sphinx, pandoc and a few other packages.

To install (and activate) a conda environment named notebook_docs containing all the necessary packages (except
pandoc), use:

conda env create -f docs/environment.yml
source activate ipywidget_docs # Linux and OS X
activate ipywidget_docs # Windows

If you want to install the necessary packages with pip instead, use (omitting --user if working in a virtual environ-
ment):

pip install -r docs/requirements.txt --user

Once you have installed the required packages, you can build the docs with:

1.2. Developer Docs 103

http://www.sphinx-doc.org/
http://pandoc.org/
http://conda.pydata.org/docs/using/envs.html#use-environment-from-file

ipywidgets Documentation, Release 7.6.2

cd docs
make clean
make html

After that, the generated HTML files will be available at build/html/index.html. You may view the docs in
your browser.

You can automatically check if all hyperlinks are still valid::

make linkcheck

Windows users can find make.bat in the docs folder.

You should also have a look at the Project Jupyter Documentation Guide.

Cleaning notebooks for docs

Notebook output and metadata should be stripped with nbstripoutput before commiting. For example:

nbstripoutput docs/source/examples/Widget\ List.ipynb

Developer Release Procedure

To release a new version of the widgets on PyPI and npm, first checkout master and cd into the repo root.

cd release
conda deactivate
conda remove --all -y -n releasewidgets
rm -rf ipywidgets

conda create -c conda-forge --override-channels -y -n releasewidgets notebook nodejs
→˓yarn twine jupyterlab=3 jupyter-packaging
conda activate releasewidgets

git clone git@github.com:jupyter-widgets/ipywidgets.git
cd ipywidgets

Fix the widget spec

If there were changes in the widget model specification (i.e., any change made to any widget attributes), we need to
update the model specification version and record the documented attributes.

First, update the relevant model specification versions. For example, the commit https://github.com/jupyter-
widgets/ipywidgets/commit/fca6f355605dc9e04062ce0eec4a7acbb5632ae2 updated the controls model version. We
follow the semver spec for model version numbers, so model changes that are backwards-incompatible should be
major version bumps, while backwards-compatible additions should be minor version bumps.

Next, regenerate the model spec with the new version numbers by doing something like this in the repository root
directory:

python ./packages/schema/generate-spec.py > packages/schema/jupyterwidgetmodels.
→˓latest.md

104 Chapter 1. Full Table of Contents

https://jupyter.readthedocs.io/en/latest/contrib_docs/index.html
https://github.com/kynan/nbstripout

ipywidgets Documentation, Release 7.6.2

Copy packages/schema/jupyterwidgetmodels.latest.md to an appropriately-named markdown file
(see the existing model spec files in that directory for the naming convention). This documents the widget model
specification for a specific ipywidget release.

Commit the changes (don’t forget to git add the new model spec file).

Publish the npm modules

clean out all dirty files
git checkout master
git pull origin master
git reset --hard origin/master
git clean -fdx
yarn install
yarn run publish

Lerna will prompt you for version numbers for each of the changed npm packages. Lerna will then change the versions
appropriately (including the interdependency versions), commit, tag, and publish the new packages to npm.

jupyterlab_widgets

Go into the jupyterlab_widgets directory. Change jupyterlab_widgets/_version.py to reflect the
new version number.

python setup.py sdist bdist_wheel
twine check dist/*
twine upload dist/*

Verify that the package is uploaded.

curl -s https://pypi.org/pypi/jupyterlab-widgets/json | jq -r '[.releases[][] | [.
→˓upload_time, .digests.sha256, .filename] | join(" ")] | sort '

widgetsnbextension

Go into the widgetsnbextension directory. Change widgetsnbextension/_version.py to reflect the
new version number.

python setup.py sdist
python setup.py bdist_wheel --universal
twine upload dist/*

Verify that the package is uploaded.

curl -s https://pypi.org/pypi/widgetsnbextension/json | jq -r '[.releases[][] | [.
→˓upload_time, .digests.sha256, .filename] | join(" ")] | sort '

1.2. Developer Docs 105

ipywidgets Documentation, Release 7.6.2

ipywidgets

Change ipywidgets/_version.py to reflect the new version number, and if necessary, a new
__html_manager_version__. Change the install_requires parameter in setup.py reference the new
widgetsnbextension version.

python setup.py sdist
python setup.py bdist_wheel --universal
twine upload dist/*

Verify that the package is uploaded:

curl -s https://pypi.org/pypi/ipywidgets/json | jq -r '[.releases[][] | [.upload_
→˓time, .digests.sha256, .filename] | join(" ")] | sort '

Push changes back

Calculate the hashes of the uploaded files. You could use a small shell script, for example, like this on macOS:

#!/bin/sh
for f in $@
do

echo "$f"
echo md5: `md5 -q "$f"`
echo sha1: `shasum -a 1 "$f" | awk '{print $1}'`
echo sha256: `shasum -a 256 "$f" | awk '{print $1}'`
echo

done

Using the above script, you can do:

hashes dist/*
hashes widgetsnbextension/dist/*
hashes jupyterlab_widgets/dist/*

Commit the changes you’ve made above, and include the uploaded files hashes in the commit message. Tag the release
if ipywidgets was released. Push to origin master (and include the tag in the push).

Update conda-forge packages (if the requirements changed to ipywidgets, make sure to update widgetsnbextension
first).

Release Notes

Here is an example of the release statistics for ipywidgets 7.0.

It has been 157 days since the last release. In this release, we closed 127 issues and 216 pull requests with 1069
commits, of which 851 are not merges.

Here are some commands used to generate some of the statistics above.

merges since in 6.0.0, but not 7.0.0, which is a rough list of merged PRs
git log --merges 6.0.0...master --pretty=oneline

To really make sure we get all PRs, we could write a program that
pulled all of the PRs, examined a commit in each one, and did

(continues on next page)

106 Chapter 1. Full Table of Contents

https://github.com/jupyter-widgets/ipywidgets/issues?q=is%3Aissue+is%3Aclosed+milestone%3A7.0
https://github.com/jupyter-widgets/ipywidgets/pulls?q=is%3Apr+milestone%3A7.0+is%3Aclosed
https://github.com/jupyter-widgets/ipywidgets/compare/6.0.0...7.0.0

ipywidgets Documentation, Release 7.6.2

(continued from previous page)

`git tag --contains <commit number>` to see if that PR commit is included
in a previous release.

issues closed with no milestone in the time period
is:issue is:closed closed:"2016-07-14 .. 2017-02-28"

date of 6.0.0 tag
git show -s --format=%cd --date=short 6.0.0^{commit}

Non-merge commits in 7.0.0 not in any 6.x release
git log --pretty=oneline --no-merges ^6.0.0 master | wc -l

Authors of non-merge commits
git shortlog -s 6.0.0..master --no-merges | cut -c8- | sort -f

New committers: authors unique in the 6.0.0..7.0.0 logs, but not in the 6.0.0 log
comm -23 <(git shortlog -s -n 6.0.0..master --no-merges | cut -c8- | sort) <(git
→˓shortlog -s -n 6.0.0 --no-merges | cut -c8- | sort) | sort -f

1.2. Developer Docs 107

	Full Table of Contents
	User Guide
	Developer Docs

